Solution: 2023-08 Groups with a perfect commutator subgroup

Find a pair of nonisomorphic nonabelian groups so that their abelianizations are isomorphic and their commutator subgroups are perfect.

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2023-08.

Other solutions were submitted by 박기윤 (KAIST 새내기과정학부 23학번, +3), 이명규 (KAIST 전산학과 20학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +2).

GD Star Rating
loading...

2023-09 Permuted sums of reciprocals

Let \(\mathbb{S}_n\) be the set of all permutations of \([n]=\{1,\dots, n\}\). For positive real numbers \(d_1,\dots, d_n\), prove \[ \sum_{\sigma\in \mathbb{S}_n} \frac{1}{ d_{\sigma(1)}(d_{\sigma(1)}+d_{\sigma(2)}) \dots (d_{\sigma(1)}+\dots + d_{\sigma(n)}) } = \frac{1}{d_1\dots d_n}.\]

GD Star Rating
loading...

Solution: 2023-07 An oscillatory integral

Suppose that \( f: [a, b] \to \mathbb{R} \) is a smooth, convex function, and there exists a constant \( t>0 \) such that \( f'(x) \geq t \) for all \( x \in (a, b) \). Prove that
\[
\left| \int_a^b e^{i f(x)} dx \right| \leq \frac{2}{t}.
\]

The best solution was submitted by Anar Rzayev (KAIST 전산학부 19학번, +4). Congratulations!

Here is the best solution of problem 2023-07.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 박준성 (KAIST 수리과학과 석박통합과정 22학번, +3), 오현섭 (KAIST 수리과학과 박사과정 21학번, +3), 이명규 (KAIST 전산학과 20학번, +3), 최예준 (서울과학기술대학교 행정학과 21학번, +3), Matthew Seok (+3), James Hamilton Clerk (+3).

GD Star Rating
loading...

2023-07 An oscillatory integral

Suppose that \( f: [a, b] \to \mathbb{R} \) is a smooth, convex function, and there exists a constant \( t>0 \) such that \( f'(x) \geq t \) for all \( x \in (a, b) \). Prove that
\[
\left| \int_a^b e^{i f(x)} dx \right| \leq \frac{2}{t}.
\]

GD Star Rating
loading...

Solution: 2023-06 Golden ratio and a functionSolution:

Let \(\phi = \frac{1+\sqrt{5}}{2}\). Let \(f(1)=1\) and for \(n\geq 1\), let
\[ f(n+1) = \left\{\begin{array}{ll}
f(n)+2 & \text{ if } f(f(n)-n+1)=n \\
f(n)+1 & \text{ otherwise}.
\end{array}\right.\]
Prove that \(f(n) = \lfloor \phi n \rfloor\), and determine when \(f(f(n)-n+1)\neq n\) holds.

The best solution was submitted by 박기윤 (KAIST 새내기과정학부 23학번, +4). Congratulations!

Here is the best solution of problem 2023-06.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 이동하 (KAIST 새내기과정학부 23학번, +3), 최예준 (서울과학기술대학교 행정학과 21학번, +3), Matthew Seok (+2). Late solutions are not graded.

GD Star Rating
loading...

Notice on POW 2023-05

There were no correct solution submitted by the due (Friday 3pm). Since we received a correct solution a few hours after the due, we decided to extend the due by Apr. 14, 3pm. Any solution submitted by that due will be considered for the full credit.

GD Star Rating
loading...

2023-06 Golden ratio and a function

Let \(\phi = \frac{1+\sqrt{5}}{2}\). Let \(f(1)=1\) and for \(n\geq 1\), let
\[ f(n+1) = \left\{\begin{array}{ll}
f(n)+2 & \text{ if } f(f(n)-n+1)=n \\
f(n)+1 & \text{ otherwise}.
\end{array}\right.\]
Prove that \(f(n) = \lfloor \phi n \rfloor\), and determine when \(f(f(n)-n+1)\neq n\) holds.

GD Star Rating
loading...