Category Archives: problem

2012-18 Diagonal

Let \(r_1,r_2,r_3,\ldots\) be a sequence of all rational numbers in \( (0,1) \) except finitely many numbers. Let \(r_j=0.a_{j,1}a_{j,2}a_{j,3}\cdots\) be a decimal representation of \(r_j\). (For instance, if \(r_1=\frac{1}{3}=0.333333\cdots\), then \(a_{1,k}=3\) for any \(k\).)

Prove that the number \(0.a_{1,1}a_{2,2}a_{3,3}a_{4,4}\cdots\) given by the main diagonal cannot be a rational number.

GD Star Rating
loading...

2012-13 functions for an inequality

Determine all nonnegative functions f(x,y) and g(x,y) such that \[ \left(\sum_{i=1}^n a_i b_i \right)^2 \le \left( \sum_{i=1}^n f(a_i,b_i)\right) \left(\sum_{i=1}^n g(a_i,b_i)\right) \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)\] for all reals \(a_i\), \(b_i\) and all positive integers n.

GD Star Rating
loading...

2012-12 Big partial sum

Let A be a finite set of complex numbers. Prove that there exists a subset B of A such that \[ \bigl\lvert\sum_{z\in B} z\bigr\lvert \ge \frac{ 1}{\pi}\sum_{z\in A} \lvert z\rvert.\]

GD Star Rating
loading...

2012-11 Dividing a circle

Let f be a continuous function from [0,1] such that f([0,1]) is a circle. Prove that there exists two closed intervals \(I_1, I_2 \subseteq [0,1]\) such that \(I_1\cap I_2\) has at most one point, \(f(I_1)\) and \(f(I_2)\) are semicircles, and \(f(I_1)\cup f(I_2)\) is a circle.

GD Star Rating
loading...

2012-9 Rank of a matrix

Let M be an n⨉n matrix over the reals. Prove that \(\operatorname{rank} M=\operatorname{rank} M^2\) if and only if \(\lim_{\lambda\to 0}  (M+\lambda I)^{-1}M\) exists.

GD Star Rating
loading...