Find all continuous functions \(f : \mathbb{R} \to \mathbb{R}\) satisfying

\[

f(x) = f(x^2 + \frac{x}{3} + \frac{1}{9} )

\]

for all \( x \in \mathbb{R} \).

**GD Star Rating**

*loading...*

Find all continuous functions \(f : \mathbb{R} \to \mathbb{R}\) satisfying

\[

f(x) = f(x^2 + \frac{x}{3} + \frac{1}{9} )

\]

for all \( x \in \mathbb{R} \).