Monthly Archives: November 2014

Solution: 2014-22 Limit

For a nonnegative real number x, let fn(x)=n1k=1((x+k)(x+k+1))(n!)2 for a positive integer n. Determine  lim.

The best solution was submitted by Hun-Min Park (박훈민), 수리과학과 2013학번. Congratulations!

Here is his solution of problem 2014-22.

Alternative solutions were submitted by 박민재 (수리과학과 2011학번, +3, his solution), 박지민 (전산학과 2012학번, +3), 이병학 (수리과학과 2013학번, +3), 채석주 (수리과학과 2013학번, +3).

GD Star Rating
loading...

2014-23 Differentiable function

Let f:[0,1]\to \mathbb R be a differentiable function with f(0)=0, f(1)=1. Prove that for every positive integer n, there exist n distinct numbers x_1,x_2,\ldots,x_n\in(0,1) such that \frac{1}{n}\sum_{i=1}^n \frac{1}{f'(x_i)}=1.

GD Star Rating
loading...

Solution: 2014-21 Duality

Let \mathcal F be a non-empty collection of subsets of a finite set U. Let D(\mathcal F)  be the collection of subsets of U that are subsets of an odd number of members of \mathcal F. Prove that D(D(\mathcal F))=\mathcal F.

The best solution was submitted by Jimin Park (박지민), 전산학과 2012학번. Congratulations!

Here is his solution of Problem 2014-21.

Alternative solutions were submitted by 박민재 (수리과학과 2011학번, +3), 채석주 (수리과학과 2013학번, +3), 이병학 (수리과학과 2013학번, +3), 정경훈 (서울대 컴퓨터공학과 2006학번, +3), 조현우 (경남과학고등학교 3학년, +3), 김경석 (경기과학고등학교 3학년, +3).

 

GD Star Rating
loading...

2014-22 Limit

For a nonnegative real number x, let f_n(x)=\frac{\prod_{k=1}^{n-1} ((x+k)(x+k+1))}{ (n!)^2} for a positive integer n. Determine  \lim_{n\to\infty}f_n(x).

GD Star Rating
loading...

2014-21 Duality

Let \mathcal F be a non-empty collection of subsets of a finite set U. Let D(\mathcal F)  be the collection of subsets of U that are subsets of an odd number of members of \mathcal F. Prove that D(D(\mathcal F))=\mathcal F.

GD Star Rating
loading...

Solution: 2014-20 Abelian group

Let G be a group such that it has no element of order 2 and (ab)^2=(ba)^2 for all a,b\in G. Prove that G is abelian.

The best solution was submitted by Chae, Seok Joo (채석주), 수리과학과 2013학번. Congratulations!

Here is his solution of problem 2014-20.

Alternative solutions were submitted by 박민재 (수리과학과 2011학번, +3), 박지민 (수리과학과 2012학번, +3), 장기정 (2014학번, +3), 박훈민 (수리과학과 2013학번, +3), 이병학 (수리과학과 2013학번, +3), 한미진 (순천향대학교 2014학번, +3), 한대진 (인천신현여중 교사, +3), 김경석 (경기과학고 3학년, +3), 진형준 (인천대학교 수학과 2014학번, +3), 장일승 (인천대학교 수학과, +3), 조현우 (경남과학고 3학년, +2).

GD Star Rating
loading...

2014-20 Abelian group

Let G be a group such that it has no element of order 2 and (ab)^2=(ba)^2 for all a,b\in G. Prove that G is abelian.

(We are sorry for the delay.)

GD Star Rating
loading...