KAIST POW 2014-21

Jimin Park

November 8, 2014

Note: $\mathbb{Z}^{*}=\mathbb{N} \cup\{0\} . \#(A)$ is the cardinality of $A . a \equiv_{2} b \Leftrightarrow a \equiv b(\bmod 2)$.
Problem. Let \mathcal{F} be a non-empty collection of subsets of a finite set U. Let $D(\mathcal{F})$ be the collection of subsets of U that are subsets of an odd number of members of \mathcal{F}. Prove that $D(D(\mathcal{F}))=\mathcal{F}$.

Proof. Let $f: 2^{U} \times 2^{U} \rightarrow \mathbb{Z}^{*}$ be $f(X, Y)=\#\left(\left\{Z \in 2^{U} \mid X \subseteq Z \wedge Z \subseteq Y\right\}\right)$. Then

$$
f(X, Y)=\left\{\begin{array}{cc}
0 & \text { if } X \nsubseteq Y \\
2^{\#(Y)-\#(X)} & \text { if } X \subseteq Y
\end{array}\right.
$$

, and $f(X, Y) \equiv_{2} 1$ iff $X=Y$, so $\sum_{F \in \mathcal{F}} f(X, F) \equiv_{2} \mathbb{1}_{\mathcal{F}}(X)$.
Let $g: 2^{U} \times 2^{\left(2^{U}\right)} \rightarrow \mathbb{Z}^{*}$ be $g(X, \mathcal{F})=\#(\{Y \in \mathcal{F} \mid X \subseteq Y\})$, so $D(\mathcal{F})=$ $\left\{X \in 2^{U} \mid g(X, \mathcal{F}) \equiv{ }_{2} 1\right\}$. Then

$$
\begin{aligned}
g(X, D(\mathcal{F})) & =\#(\{Y \in D(\mathcal{F}) \mid X \subseteq Y\}) \\
& =\#\left(\left\{Y \in 2^{U} \mid Y \in D(\mathcal{F}) \wedge X \subseteq Y\right\}\right) \\
& =\#\left(\left\{Y \in 2^{U} \mid g(Y, \mathcal{F}) \equiv{ }_{2} 1 \wedge X \subseteq Y\right\}\right) \\
& \equiv_{2} \sum_{X \subseteq Y \in 2^{U}} g(Y, \mathcal{F}) \\
& =\sum_{X \subseteq Y \in 2^{U}} \#(\{Z \in \mathcal{F} \mid Y \subseteq Z\}) \\
& =\sum_{X \subseteq Y \in 2^{U}} \sum_{Z \in \mathcal{F}} \mathbb{1}_{2^{Z}}(Y) \\
& =\sum_{Z \in \mathcal{F}} \sum_{X \subseteq Y \in 2^{U}} \mathbb{1}_{2^{Z}}(Y) \\
& =\sum_{Z \in \mathcal{F}} \#\left(\left\{Y \in 2^{U} \mid X \subseteq Y \wedge Y \subseteq Z\right\}\right) \\
& =\sum_{Z \in \mathcal{F}} f(X, Z) \equiv_{2} \mathbb{1}_{\mathcal{F}}(X)
\end{aligned}
$$

, so $D(D(\mathcal{F}))=\left\{X \in 2^{U} \mid g(X, D(\mathcal{F})) \equiv{ }_{2} 1\right\}=\left\{X \in 2^{U} \mid X \in \mathcal{F}\right\}=\mathcal{F}$.

