Let \( p_n \) be the \(n\)-th prime number, \( p_1 = 2, p_2 = 3, p_3 = 5, \dots \). Prove that the following series converges:
\[
\sum_{n=1}^{\infty} \frac{1}{p_n} \prod_{k=1}^n \frac{p_k -1}{p_k}.
\]
The best solution was submitted by 김기현 (수리과학과 대학원생). Congratulations!
Here is his solution of problem 2019-05.
Other solutions were submitted by 강한필 (전산학부 2016학번), 고성훈 (2018학번, +3), 길현준 (2018학번, +3), 김기수 (수리과학과 2018학번), 김기현 (수리과학과 대학원생), 김태균 (수리과학과 2016학번), 박항 (전산학부 2013학번), 신원석 (서울대학교 컴퓨터공학부), 이본우 (수리과학과 2017학번, +3), 이정환 (수리과학과 2015학번, +3), 조재형 (수리과학과 2016학번, +3), 채지석 (수리과학과 2016학번), 최백규 (생명과학과 2016학번, +3), 김민서 (2019학번, +2), 윤창기 (서울대학교 화학과).
loading...