POW 2019-05

수리과학과 석박통합, 김기현
April 7, 2019

Problem 1. Let p_{n} be the n-th prime number, i.e. $p_{1}=2, p_{2}=3, p_{3}=5$, and so on. Prove that the following series converges:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{p_{n}} \prod_{k=1}^{n} \frac{p_{k}-1}{p_{k}} . \tag{1}
\end{equation*}
$$

Remark. The condition that the sequence $\left(p_{n}\right)_{n \in \mathbf{N}}$ consists of prime numbers is irrelavent. In fact, the series (1) still converges under the weak assumption $p_{n} \geq 1$. See the proof below.

Solution. Let $f_{0}:=1$. For each $n \in \mathbf{N}$, let

$$
f_{n}:=\prod_{k=1}^{n} \frac{p_{k}-1}{p_{k}} .
$$

The sequence $\left(f_{0}, f_{1}, f_{2}, \ldots\right)$ is positive and decreasing. Since

$$
\sum_{n=1}^{\infty} \frac{1}{p_{n}} \cdot \prod_{k=1}^{n} \frac{p_{k}-1}{p_{k}}=\sum_{n=1}^{\infty} \frac{f_{n-1}-f_{n}}{f_{n-1}} \cdot f_{n} \leq \sum_{n=1}^{\infty}\left(f_{n-1}-f_{n}\right) \leq 1<\infty,
$$

the series (1) converges.

