POW 2019-05

수리과학과 석박통합, 김기현

April 7, 2019

Problem 1. Let p_n be the *n*-th prime number, i.e. $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, and so on. Prove that the following series converges:

$$\sum_{n=1}^{\infty} \frac{1}{p_n} \prod_{k=1}^{n} \frac{p_k - 1}{p_k}.$$
 (1)

Remark. The condition that the sequence $(p_n)_{n \in \mathbb{N}}$ consists of prime numbers is irrelevent. In fact, the series (1) still converges under the weak assumption $p_n \geq 1$. See the proof below.

Solution. Let $f_0 \coloneqq 1$. For each $n \in \mathbf{N}$, let

$$f_n \coloneqq \prod_{k=1}^n \frac{p_k - 1}{p_k}.$$

The sequence $(f_0, f_1, f_2, ...)$ is positive and decreasing. Since

$$\sum_{n=1}^{\infty} \frac{1}{p_n} \cdot \prod_{k=1}^{n} \frac{p_k - 1}{p_k} = \sum_{n=1}^{\infty} \frac{f_{n-1} - f_n}{f_{n-1}} \cdot f_n \le \sum_{n=1}^{\infty} (f_{n-1} - f_n) \le 1 < \infty,$$

the series (1) converges.

	1
	ц
	_