POW 2015-06

Problem. Let A be an unbounded subset of \mathbb{R} . Let T be the set of all real numbers t such that $\{tx - |tx| : x \in A\}$ is dense in [0, 1]. Is T dense in \mathbb{R} ?

Proof. We will show that *T* is dense in \mathbb{R} . Define $f_x(t) = tx - \lfloor tx \rfloor$ for $x \in A$. Define $T_{r,s} = \{t \in \mathbb{R} : f_x(t) \in (r,s) \text{ for some } x \in A\}$ for $r, s \in \mathbb{Q}$ with $0 \le r < s \le 1$. Observe the followings for such *r*, *s*:

• $T_{r,s}$ is open because

$$T_{r,s} = \bigcup_{x \in A} f_x^{-1}((r,s))$$

where each $f_x^{-1}((r,s))$ is nonempty open for all nonzero $x \in A$ and $f_0^{-1}((r,s)) = \emptyset$.

• $T_{r,s}$ is dense. Take any $t \in \mathbb{R}$ and $\varepsilon > 0$. Since A is unbounded, there exists $x \in A$ such that $|x| > 1/\varepsilon$. Then, $f_x((t - \varepsilon, t + \varepsilon)) = [0, 1) \supseteq (r, s)$, so $T_{r,s} \cap (t - \varepsilon, t + \varepsilon) \neq \emptyset$.

As \mathbb{R} is a complete metric space, \mathbb{R} is a Baire space. Thus $T = \bigcap_{r,s} T_{r,s}$ is dense in \mathbb{R} .