Prove the following identity:
\[
\sum_{k=0}^{n-1} \binom{z}{k} \frac{x^{n-k}}{n-k} = \sum_{k=1}^n \binom{z-k}{n-k} \frac{(x+1)^k -1}{k}.
\]
2025-17 Combinatorial identity
Leave a reply
Prove the following identity:
\[
\sum_{k=0}^{n-1} \binom{z}{k} \frac{x^{n-k}}{n-k} = \sum_{k=1}^n \binom{z-k}{n-k} \frac{(x+1)^k -1}{k}.
\]
Denote \(P = \{(x, y, z) \in \mathbb{R^3}: 10< x,y,z <31\}\). Suppose a function \(f (v): \mathbb{R^3} \to \mathbb{R_{\geq 0}}\) satisfies:
(a) \(f(\lambda v) = \lambda^{25} f(v)\) for all \(v\in P\) and \(0<\lambda \in \mathbb{R}\),
(b) \(f(v+w) \geq f(v)\) for every \(v, w \in P\),
(c) \(f (v)\) is locally bounded.
Show that \(f (v)\) is locally Lipschitz in \(P\).
The best solution was submitted by 정영훈 (수리과학과 24학번, +4). Congratulations!
Here is the best solution of problem 2025-15.