Denote \(P = \{(x, y, z) \in \mathbb{R^3}: 10< x,y,z <31\}\). Suppose a function \(f (v): \mathbb{R^3} \to \mathbb{R_{\geq 0}}\) satisfies:
(a) \(f(\lambda v) = \lambda^{25} f(v)\) for all \(v\in P\) and \(0<\lambda \in \mathbb{R}\),
(b) \(f(v+w) \geq f(v)\) for every \(v, w \in P\),
(c) \(f (v)\) is locally bounded.
Show that \(f (v)\) is locally Lipschitz in \(P\).
2025-15 locally Lipschitz functions
Leave a reply
