Solution: 2013-09 Inequality for a sequence

Let \( N > 1000 \) be an integer. Define a sequence \( A_n \) by
\[
A_0 = 1, \, A_1 = 0, \, A_{2k+1} = \frac{2k}{2k+1} A_{2k} + \frac{1}{2k+1} A_{2k-1}, \, A_{2k} = \frac{2k-1}{2k} \frac{A_{2k-1}}{N} + \frac{1}{2k} A_{2k-2}.
\]
Show that the following inequality holds for any integer \( k \) with \( 1 \leq k \leq (1/2) N^{1/3} \).
\[
A_{2k-2} \leq \frac{1}{\sqrt{(2k-2)!}}.
\]

The best solution was submitted by 어수강, 서울대학교 석사과정. Congratulations!

An alternative solution was submitted by 라준현(08학번, +3). Thank you for your participation.

GD Star Rating
loading...