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[PROBLEM]
Let    be an integer. Define a sequence   by

         


  


    
 


 


 .

Show that the following inequality holds for any integer  with  ≤ ≤ 
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[SOLUTION]
We begin with simple lemma.

Lemma :　If   , then 
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Thus, we will show that 
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Since   is increasing on  ∞, ≤  for all  ≤ ≤ 
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Which finishes the proof of lemma. □

Now, we go on to the main problem.
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we have
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for all ∈ . 

Now, we will proof the main result by using Strong Induction.
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Let assume that there exist a natural number  such that  ≤ ≤ 
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(By our lemma)≤
 .    . 

Hence   ≤ 
  for any integer  with  ≤ ≤ 

  


.

Which is what we wanted. ■


