Prove that for each positive integer \(n\), there exist \(n\) real numbers \(x_1,x_2,\ldots,x_n\) such that \[\sum_{j=1}^n \frac{x_j}{1-4(i-j)^2}=1 \text{ for all }i=1,2,\ldots,n\] and \[\sum_{j=1}^n x_j=\binom{n+1}{2}.\]

The best solution was submitted by Taehyun Eom (엄태현), 2012학번. Congratulations!

Here is his Solution of Problem 2012-23.

Alternative solutions were submitted by 박민재 (2011학번, +3, Solution), 김태호 (수리과학과 2011학번, +2), 이명재 (2012학번, +2).

**GD Star Rating**

*loading...*

*Related*

Myeongjae해를 구하지 않는 간단한 풀이가 있어 소개합니다.

Postech 수학과 백진언 군의 풀이입니다.

http://mjlee93.tistory.com/attachment/cfile25.uf@170BCA3650BD70B92FF3BF.pdf