POW2012-23 2012 엄태현

Let n combination m as $C_{n,m}$

Let
$$x_{n,m} = \frac{1}{4^{n-1}} (2n - 2m + 1)(2m - 1) C_{2(n-m),n-m} C_{2(m-1),m-1}$$
 for $m = 1, 2, 3, \dots, n$
Then $x_{n+1,m} = (1 + \frac{1}{2(n-m+1)}) x_{n,m}, x_{n+1,m+1} = (1 + \frac{1}{2m}) x_{n,m}, x_{n,m} = x_{n,n+1-m}$

Then by Comparing coefficient of $\frac{2 \times 4^2}{(1-4x)^3} = (\frac{1}{1-4x})^{''} = 2 \times 4^2 ((1-4x)^{-\frac{3}{2}})^2$

$$\sum_{i=1}^{n} x_{n,i} = \frac{n(n+1)}{2}$$

We can easily prove that this equation has unique solution by Gauss elimination. Now when n=1, $x_{1,1}$ is a solution

For assumption let $x_{k,1}, x_{k,2}, x_{k,2}, \cdots, x_{k,k}$ is solution when n=k

$$\begin{split} \sum_{j=1}^{k+1} \frac{x_{k+1,j}}{1-4(i-j)^2} &- \sum_{j=1}^k \frac{x_{k,j}}{1-4(i-j)^2} = \frac{x_{k+1,k+1}}{1-4(k+1-i)^2} + \sum_{j=1}^k \frac{x_{k,j}}{(2k-2j+2)(1-2i+2j)(1-2i+2j)(1+2i-2j)} \\ &\sum_{j=1}^{k+1} \frac{x_{k+1,j}}{1-4(i+1-j)^2} - \sum_{j=1}^k \frac{x_{k,j}}{1-4(i-j)^2} = \frac{x_{k+1,1}}{1-4i^2} + \sum_{j=1}^k \frac{x_{k,j}}{2j(1-2i+2j)(1+2i-2j)} \\ &\frac{x_{k,j}}{(2k-2j+2)(1-2i+2j)(1+2i-2j)} \\ &= \frac{1}{2} \left(\frac{1}{2(k-i)+3} - \frac{1}{2(k-i)+1}\right) \frac{x_{k,j}}{(2k-2j+2)} + x_{k,j} \frac{4(k-i)-2(2i-2j)+4}{(2(k-i)+3)(2(k-i)+1)(1-4(i-j)^2)}\right) \\ &= \frac{1}{2} \left(\frac{-2}{4(k+1-i)^2-1}\right) (x_{k,j+1} - x_{k,j}) + \frac{2(k-2i+1+j)}{(2(k-i)+3)(2(k-i)+1)} \frac{x_{k,j}}{1-4(i-j)^2} \end{split}$$

Thus,

$$\begin{split} \sum_{j=1}^{k+1} \frac{x_{k+1,j}}{1-4(i-j)^2} &- \sum_{j=1}^k \frac{x_{k,j}}{1-4(i-j)^2} = \frac{1}{1-4(k+1-i)^2} (\sum_{j=1}^{k+1} x_{k+1,j} - \sum_{j=1}^k x_{k,j}) + \\ &- \sum_{j=1}^k \frac{2(k-2i+1+j)}{(2(k-i)+3)(2(k-i)+1)} \frac{x_{k,j}}{1-4(i-j)^2} \\ &= \frac{1}{1-4(k+1-i)^2} (\frac{(k+1)(k+2)}{2} - \frac{(k+1)k}{2}) + \sum_{j=1}^k \frac{2(k-2i+1+j)}{(2(k-i)+3)(2(k-i)+1)} \frac{x_{k,j}}{1-4(i-j)^2} \\ &= \frac{k+1}{1-4(k+1-i)^2} + \sum_{j=1}^k \frac{2(k-2i+1)}{(2(k-i)+3)(2(k-i)+1)} \frac{x_{k,j}}{1-4(i-j)^2} + \sum_{j=1}^k \frac{1}{(2(k-i)+3)(2(k-i)+1)} \frac{2jx_{k,j}}{1-4(i-j)^2} \\ &= \frac{1}{1-4(k+1-i)^2} (k+1-2(k-2i+1) - \sum_{j=1}^k \frac{2jx_{k,j}}{1-4(i-j)^2}) \\ &= \frac{1}{1-4(k+1-i)^2} (4i-k-1 - \sum_{j=1}^k \frac{2jx_{k,j}}{1-4(i-j)^2}) \end{split}$$

Similary,

$$\sum_{j=1}^{k+1} \frac{x_{k+1,j}}{1-4(i+1-j)^2} - \sum_{j=1}^k \frac{x_{k,j}}{1-4(i-j)^2} = \frac{1}{1-4i^2} \left(k+1-4i + \sum_{j=1}^k \frac{2jx_{k,j}}{1-4(i-j)^2}\right)$$
Thus

Thus,

$$(1-4i^2)(\sum_{j=1}^{k+1}\frac{x_{k+1,j}}{1-4(i+1-j)^2}-1) + (1-4(k+1-i)^2)(\sum_{j=1}^{k+1}\frac{x_{k+1,j}}{1-4(i-j)^2}-1) = 0$$

Using $x_{n,m} = x_{n,n+1-m}$, we can prove

$$\sum_{j=1}^{k+1} \frac{x_{k+1,j}}{1-4(i-j)^2} = 1$$

Thus $x_{k+1,1}, x_{k+1,2}, \cdots, x_{k+1,k+1}$ is solution when n = k+1

By Mathematical induction, $x_{n,i}\,,i=1,2,3,\cdots,n$ are unique solution and

 $\displaystyle{\sum_{i=1}^n} x_{n,i} = \frac{(n+1)n}{2}\,.$ Thus problem proved