Solution: 2011-10 Multivariable polynomial

Let \(t_1,t_2,\ldots,t_n\) be positive integers. Let \(p(x_1,x_2,\dots,x_n)\) be a polynomial with n variables such that \(\deg(p)\le t_1+t_2+\cdots+t_n\). Prove that \(\left(\frac{\partial}{\partial x_1}\right)^{t_1} \left(\frac{\partial}{\partial x_2}\right)^{t_2}\cdots \left(\frac{\partial}{\partial x_n}\right)^{t_n} p\) is equal to \[\sum_{a_1=0}^{t_1} \sum_{a_2=0}^{t_2}\cdots \sum_{a_n=0}^{t_n} (-1)^{t_1+t_2+\cdots+t_n+a_1+a_2+\cdots+a_n}\left( \prod_{i=1}^n \binom{t_i}{a_i} \right)p(a_1,a_2,\ldots,a_n).\]

The best solution was submitted by Kang, Dongyub (강동엽), 전산학과 2009학번. Congratulations!

Here is his Solution of Problem 2011-10

An alternative solution was submitted by 박민재 (2011학번, +3).

GD Star Rating