Let \[p(x)=x^n+x^{n-1}+a_{n-2}x^{n-2}+\cdots+a_1 x_1 + a_0\] be a polynomial. Prove that if \(p(z)=0\) for a complex number \(z\), then \[ |z| \le 1+ \sqrt{\max (|a_0|,|a_1|,|a_2|,\ldots,|a_{n-2}|)}.\]

**GD Star Rating**

*loading...*

Let \[p(x)=x^n+x^{n-1}+a_{n-2}x^{n-2}+\cdots+a_1 x_1 + a_0\] be a polynomial. Prove that if \(p(z)=0\) for a complex number \(z\), then \[ |z| \le 1+ \sqrt{\max (|a_0|,|a_1|,|a_2|,\ldots,|a_{n-2}|)}.\]

Let \[ F(x) = \sum_{n=1}^{1000} \cos (n^{3/2} x). \]

Prove that \( F \) has at least \( 80 \) zeros in the interval \( (0, 2013) \).

For a nonnegative integer n, let \(F_n(x)=\sum_{m=0}^n \frac{(-2)^m (2n-m)! \Gamma(x+1)}{m! (n-m)! \Gamma(x-m+1)}\). Find all x such that F_{n}(x)=0.