Suppose that \( a_1, a_2, \cdots \) are positive real numbers. Prove that
\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} \leq e \sum_{n=1}^{\infty} a_n \,.
\]
loading...
Suppose that \( a_1, a_2, \cdots \) are positive real numbers. Prove that
\[
\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} \leq e \sum_{n=1}^{\infty} a_n \,.
\]
Suppose that a function \( f:[0, 1] \to (0, \infty) \) satisfies that
\[ \int_0^1 f(x) dx = 1. \]
Prove the following inequality.
\[ \left( \int_0^1 |f(x)-1| dx \right)^2 \leq 2 \int_0^1 f(x) \log f(x) dx. \]
Let \( N > 1000 \) be an integer. Define a sequence \( A_n \) by
\[
A_0 = 1, \, A_1 = 0, \, A_{2k+1} = \frac{2k}{2k+1} A_{2k} + \frac{1}{2k+1} A_{2k-1}, \, A_{2k} = \frac{2k-1}{2k} \frac{A_{2k-1}}{N} + \frac{1}{2k} A_{2k-2}.
\]
Show that the following inequality holds for any integer \( k \) with \( 1 \leq k \leq (1/2) N^{1/3} \).
\[
A_{2k-2} \leq \frac{1}{\sqrt{(2k-2)!}}.
\]
Let \( f : [0, 1] \to \mathbb{R} \) be a continuously differentiable function with \( f(0) = 0 \) and \( 0 < f'(x) \leq 1 \). Prove that \[ \left( \int_0^1 f(x) dx \right)^2 \geq \int_0^1 [f(x)]^3 dx. \]
Determine all nonnegative functions f(x,y) and g(x,y) such that \[ \left(\sum_{i=1}^n a_i b_i \right)^2 \le \left( \sum_{i=1}^n f(a_i,b_i)\right) \left(\sum_{i=1}^n g(a_i,b_i)\right) \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)\] for all reals \(a_i\), \(b_i\) and all positive integers n.
Let f(x) be a continuous function on I=[a,b], and let g(x) be a differentiable function on I. Let g(a)=0 and c≠0 a constant. Prove that if
|g(x) f(x)+c g′(x)|≤|g(x)| for all x∈I,
then g(x)=0 for all x∈I.
Let \(P_1,P_2,\ldots,P_n\) be n points in {(x,y): 0<x<1, 0<y<1} (n>1). Let \(r_i=\min_{j\neq i} d(P_i,P_j)\) where d(x,y) means the distance between two points x and y. Prove that \(r_1^2+r_2^2+\cdots+r_n^2\le 4\).
Let \(x_1,x_2,\ldots,x_n\) be nonnegative real numbers. Show that
\(\displaystyle \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i^{n-1}\right) \le (n-1) \sum_{i=1}^n x_i^n + n \prod_{i=1}^n x_i \).