Solution: 2023-18 Degrees of a graph

Find all integers \( n \geq 8 \) such that there exists a simple graph with \( n \) vertices whose degrees are as follows:

(i) \( (n-4) \) vertices of the graph are with degrees \( 4, 5, 6, \dots, n-2, n-1 \), respectively.

(ii) The other \( 4 \) vertices are with degrees \( n-2, n-2, n-1, n-1 \), respectively.

The best solution was submitted by 이도현 (KAIST 수리과학과 석박통합과정 23학번, +4). Congratulations!

Here is the best solution of problem 2023-18.

Other solutions were submitted by 강지민 (세마고 3학년, +3), 김기수 (KAIST 수리과학과 18학번, +3), 김민서 (KAIST 수리과학과 19학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 나경민 (KAIST 전산학부 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 전해구 (KAIST 기계공학과 졸업생, +3), 조현준 (KAIST 수리과학과 22학번, +3), 지은성 (KAIST 수리과학과 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), 최민규 (한양대학교 의과대학 졸업생, +3), Adnan Sadik (KAIST 새내기과정학부 23학번, +3), Dzhamalov Omurbek (KAIST 전산학부 22학번, +3), Muhammadfiruz Hasanov (+3).

GD Star Rating
loading...

2023-18 Degrees of a graph

Find all integers \( n \geq 8 \) such that there exists a simple graph with \( n \) vertices whose degrees are as follows:

(i) \( (n-4) \) vertices of the graph are with degrees \( 4, 5, 6, \dots, n-2, n-1 \), respectively.

(ii) The other \( 4 \) vertices are with degrees \( n-2, n-2, n-1, n-1 \), respectively.

GD Star Rating
loading...

Solution: 2023-17 Comparing area of triangles

Let \(f(x) = x^4 + (2-a)x^3 – (2a+1)x^2 + (a-2)x + 2a\) for some \(a \geq 2\). Draw two tangent lines of its graph at the point \((-1,0)\) and \((1,0)\) and let \(P\) be the intersection point. Denote by \(T\) the area of the triangle whose vertices are \((-1,0), (1,0)\) and \(P\). Let \(A\) be the area of domain enclosed by the interval \([-1,1]\) and the graph of the function on this interval. Show that \(T \leq 3A/2.\)

The best solution was submitted by 서성욱(동산고 2학년, +4). Congratulations!

Here is the best solution of problem 2023-17.

Other solutions were submitted by 강지민 (세마고 3학년, +3), 김민서 (KAIST 수리과학과 19학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 여인영 (KAIST 물리학과 20학번, +3), 이도현 (KAIST 수리과학과 석박통합과정 23학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 조현준 (KAIST 수리과학과 22학번, +3), 지은성 (KAIST 수리과학과 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), 최민규 (한양대학교 의과대학 졸업생, +3), Adnan Sadik (KAIST 새내기과정학부 23학번, +3), Muhammadfiruz Hasanov (+3).

GD Star Rating
loading...

2023-17 Comparing area of triangles

Let \(f(x) = x^4 + (2-a)x^3 – (2a+1)x^2 + (a-2)x + 2a\) for some \(a \geq 2\). Draw two tangent lines of its graph at the point \((-1,0)\) and \((1,0)\) and let \(P\) be the intersection point. Denote by \(T\) the area of the triangle whose vertices are \((-1,0), (1,0)\) and \(P\). Let \(A\) be the area of domain enclosed by the interval \([-1,1]\) and the graph of the function on this interval. Show that \(T \leq 3A/2.\)

GD Star Rating
loading...

Solution: 2023-16 Zeros in a sequence

Define the sequence \( x_n \) by \( x_1 = 0 \) and
\[
x_n = x_{\lfloor n/2 \rfloor} + (-1)^{n(n+1)/2}
\]
for \( n \geq 2\). Find the number of \( n \leq 2023 \) such that \( x_n = 0 \).

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2023-16.

Other solutions were submitted by 김기수 (KAIST 수리과학과 18학번, +3), 김민서 (KAIST 수리과학과 19학번, +3), 김준홍 (KAIST 수리과학과 20학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 서성욱 (동산고 2학년, +3), 여인영 (KAIST 물리학과 20학번, +3),이도현 (KAIST 수리과학과 석박통합과정 23학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 전해규 (KAIST 기계공학과 졸업생, +3), 조현준 (KAIST 수리과학과 22학번, +3), 최백규 (KAIST 생명과학과 박사과정 20학번, +3), Adnan Sadik (KAIST 새내기과정학부 23학번, +3), Muhammadfiruz Hasanov (+3), 강지민 (세마고 3학년, +2), 지은성 (KAIST 수리과학과 20학번, +2), 최민규 (한양대학교 의과대학 졸업생, +2), Eun Chan (+2).

GD Star Rating
loading...

Solution: 2023-15 An inequality for complex polynomials

Let \(p(z), q(z) \) and \(r(z)\) be polynomials with complex coefficients in the complex plane. Suppose that \(|p(z)| + |q(z)| \leq |r(z)|\) for every \(z\). Show that there exist two complex numbers \( a,b \) such that \(|a|^2 +|b|^2 =1\) and \( a p(z) + bq(z) =0 \) for every \(z\).

The best solution was submitted by 김기수 (KAIST 수리과학과 18학번, +4). Congratulations!

Here is the best solution of problem 2023-15.

Other solutions were submitted by 강지민 (세마고 3학년, +3), 김민서 (KAIST 수리과학과 19학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 신민서 (KAIST 수리과학과 20학번, +3), 여인영 (KAIST 물리학과 20학번, +3),이도현 (KAIST 수리과학과 석박통합과정 23학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 조현준 (KAIST 수리과학과 22학번, +3), 지은성 (KAIST 수리과학과 20학번, +3), 최민규 (한양대학교 의과대학 졸업생, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3), Muhammadfiruz Hasanov (+3).

GD Star Rating
loading...