Monthly Archives: June 2025

Solution: 2025-10 Intersections of random chords

Let \(P\) be a regular \(2n\)-gon. A perfect matching is a partition of vertex points into \(n\) unordered pairs; each pair represents a chord drawn inside \(P\). Two chords are said to “intersect” if they have a nonempty intersection.

Let \(X\) be the (random) number of intersection points (formed by intersecting chords) in a perfect matching chosen uniformly at random from the set of all possible matchings. Note that more than two chords can intersect at the same point, and in this case this intersection point is just counted once. Compute \(\lim_{n\rightarrow \infty} \frac{\mathbb E[X]}{n^2}\).

The best solution was submitted by Anar Rzayev (수리과학과 19학번, +4). Congratulations!

Here is the best solution of problem 2025-10.

Other solutions were submitted by 김동훈 (수리과학과 22학번, +3), 김준홍 (수리과학과 석박통합과정, +3), 신민규 (수리과학과 24학번, +3), 정서윤 (수리과학과 학사과정, +2).

GD Star Rating
loading...