Let \(P(z) = z^3 + c_1 z^2 + c_2 z+ c_3\) be a complex polynomial in \(\mathbb{C}\). Its complex derivative is given by \(P’(z) = 3z^{2} +2c_1z+c_{2}.\) Assume that there exist two points a, b in the open unit disc of complex plane such that P(a) = P(b) =0. Show that there is a point w belonging to the line segment joining a and b such that \({\rm Re} (P’(w)) = 0\).
The best solution was submitted by 김준홍 (KAIST 수리과학과 20학번, +4). Congratulations!
Here is the best solution of problem 2024-03.
Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정 24학번, +3), 신정연 (KAIST 수리과학과 21학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 지은성 (KAIST 수리과학과 23학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +2), 박기윤 (KAIST 수리과학과 23학번, +2), 이명규 (KAIST 전산학부 20학번, +2), There were incorrect solutions submitted.
loading...