POW 2024-03: Roots of complex derivative

수리과학과 20학번 김준홍

If a = b, then line segment is just a, which means $\operatorname{Re}(P'(a)) = 0$. But in this case, $P(z) = z^3 - 4z$ is counterexample. P(0) = 0 but $\operatorname{Re}(P'(0)) = -4$, so statement does not hold. So let $a \neq b$. Lemma) $\frac{\partial}{\partial u}[\operatorname{Re}(P(z))] = \operatorname{Re}(P'(z))$ for complex polynomial P(z), and z = u + iv. Proof) It is sufficient to show when $P(z) = cz^n$. If n = 0, then both side are 0, so it holds. Note that $\frac{\partial z}{\partial u} = \frac{\partial \overline{z}}{\partial u} = 1$. Otherwise, $\frac{\partial}{\partial u}[\operatorname{Re}(P(z))] = \frac{\partial}{\partial u}(\frac{cz^n + \overline{cz^n}}{2}) = \frac{\partial}{\partial u}(\frac{cz^n + \overline{cz^n}}{2}) = \frac{cnz^{n-1} + \overline{cnz^{n-1}}}{2} = \operatorname{Re}(P'(z))$. \blacksquare For line segment joining a and b, we can rotate whole plane so that segment is parallel to real

axis. In other words, $Q(z) = P(e^{i\theta}z)$ has zero at $a' = ae^{-i\theta}$ and $b' = be^{-i\theta}$, and $\operatorname{Im}(a') = \operatorname{Im}(b')$.

Consider $f(u) = \operatorname{Re}(e^{-i\theta}Q(z))$ for $z = u + \operatorname{Im}(a')$. We can consider this as single-valued function, as imaginary part is constant in line segment joining a' and b'. Note that $f(\operatorname{Re}(a')) = f(\operatorname{Re}(b')) = 0$, and f(u) is real function. By Rolle's theorem, there exists some u' between $\operatorname{Re}(a')$ and $\operatorname{Re}(b')$ such that $f'(u') = \frac{\partial}{\partial u} [\operatorname{Re}(e^{-i\theta}Q(w))] = \operatorname{Re}(e^{-i\theta}Q'(w)) = 0$ for $w = u' + i\operatorname{Im}(a')$. Since $Q(z) = P(e^{i\theta}z)$ implies $Q'(z) = e^{i\theta}P'(e^{i\theta}z)$, $\operatorname{Re}(P'(e^{i\theta}w)) = \operatorname{Re}(e^{-i\theta}Q'(w)) = 0$. wbelongs to segment of $a' = ae^{-i\theta}$ and $b' = be^{-i\theta}$, so $e^{i\theta}w$ belongs to segment of a and b, which is the desired result.