Define the sequence \( x_n \) by \( x_1 = 0 \) and
\[
x_n = x_{\lfloor n/2 \rfloor} + (-1)^{n(n+1)/2}
\]
for \( n \geq 2\). Find the number of \( n \leq 2023 \) such that \( x_n = 0 \).
The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!
Here is the best solution of problem 2023-16.
Other solutions were submitted by 김기수 (KAIST 수리과학과 18학번, +3), 김민서 (KAIST 수리과학과 19학번, +3), 김준홍 (KAIST 수리과학과 20학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 서성욱 (동산고 2학년, +3), 여인영 (KAIST 물리학과 20학번, +3),이도현 (KAIST 수리과학과 석박통합과정 23학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 전해규 (KAIST 기계공학과 졸업생, +3), 조현준 (KAIST 수리과학과 22학번, +3), 최백규 (KAIST 생명과학과 박사과정 20학번, +3), Adnan Sadik (KAIST 새내기과정학부 23학번, +3), Muhammadfiruz Hasanov (+3), 강지민 (세마고 3학년, +2), 지은성 (KAIST 수리과학과 20학번, +2), 최민규 (한양대학교 의과대학 졸업생, +2), Eun Chan (+2).
GD Star Rating
loading...