Daily Archives: December 5, 2022

Solution: 2022-22 An integral sequence

Define a sequence \( a_n \) by \( a_1 = 1 \) and
\[
a_{n+1} = \frac{1}{n} \left( 1 + \sum_{k=1}^n a_k^2 \right)
\]
for any \( n \geq 1 \). Prove or disprove that \( a_n \) is an integer for all \( n \geq 1 \).

The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2022-22.

Other solutions were submitted by 기영인 (KAIST 22학번, +3), 김기수 (KAIST 수리과학과 18학번, +3), 박준성 (KAIST 수리과학과 석박통합과정, +3). An incomplete solution was submitted.

GD Star Rating
loading...

Solution: 2022-20 4 by 4 symmetric integral matrices

Let \(S\) be the set of all 4 by 4 integral positive-definite symmetric unimodular matrices. Define an equivalence relation \( \sim \) on \(S\) such that for any \( A,B \in S\), we have \(A \sim B\) if and only if \(PAP^\top = B\) for some integral unimodular matrix \(P\). Determine \(S ~/\sim \).

The best solution was submitted by 김기수 (KAIST 수리과학과 18학번, +4). Congratulations!

Here is the best solution of problem 2022-20.

GD Star Rating
loading...