Solution: 2021-10 Integral inequality

Let \( f: [0, 1] \to \mathbb{R} \) be a continuous function satisfying
\[
\int_x^1 f(t) dt \geq \int_x^1 t\, dt
\]
for all \( x \in [0, 1] \). Prove that
\[
\int_0^1 [f(t)]^2 dt \geq \int_0^1 t f(t) dt.
\]

The best solution was submitted by 김기택 (2021학번, +4). Congratulations!

Here is the best solution of problem 2021-10.

Other solutions were submitted by 강한필 (전산학부 2016학번, +3), 고성훈 (수리과학과 2018학번, +3), 최백규 (생명과학과 대학원, +3).

GD Star Rating
loading...