POW 2021-10 Integral inequality

Kee Taek Kim

May 24, 2021

Problem. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
\int_{x}^{1} f(t) d t \geq \int_{x}^{1} t d t
$$

for all $x \in[0,1]$. Prove that

$$
\int_{0}^{1}[f(t)]^{2} d t \geq \int_{0}^{1} t f(t) d t
$$

Solution. Let

$$
F(x)=\int_{x}^{1}[f(t)-t] d t \geq 0
$$

then $F^{\prime}(t)=t-f(t)$, and $F(1)=0$. We want to show that

$$
\int_{0}^{1}\left[f(t)^{2}-t f(t)\right] d t=\int_{0}^{1}\left[t-F^{\prime}(t)\right]\left[-F^{\prime}(t)\right] d t
$$

is equal or greater than 0 . By the integration by parts,

$$
\int_{0}^{1}\left[-t F^{\prime}(t)\right] d t=[-t F(t)]_{0}^{1}+\int_{0}^{1} F(t) d t=\int_{0}^{1} F(t) d t \geq 0
$$

Hence

$$
\int_{0}^{1}\left[t-F^{\prime}(t)\right]\left[-F^{\prime}(t)\right] d t=\int_{0}^{1}\left[-t F^{\prime}(t)\right] d t+\int_{0}^{1}\left[F^{\prime}(t)\right]^{2} d t \geq 0
$$

and the equality holds when $\left[F^{\prime}(t)\right]^{2}=0$, i.e. $f(t)=t$.

