Daily Archives: October 29, 2021

2021-19 The answer is zero

Suppose that \( a_1 + a_2 + \dots + a_n =0 \) for real numbers \( a_1, a_2, \dots, a_n \) and \( n \geq 2\). Set \( a_{n+i}=a_i \) for \( i=1, 2, \dots \). Prove that
\[
\sum_{i=1}^n \frac{1}{a_i (a_i+a_{i+1}) (a_i+a_{i+1}+a_{i+2}) \dots (a_i+a_{i+1}+\dots+a_{i+n-2})} =0
\]
if the denominators are nonzero.

GD Star Rating
loading...