Daily Archives: May 31, 2019

Solution: 2019-10 Is there canonical topology for topological groups?

Let \(G\) be a group. A topology on \(G\) is said to be a group topology if the map \(\mu: G \times G \to G\) defined by \(\mu(g, h) = g^{-1}h\) is continuous with respect to this topology where \(G \times G\) is equipped with the product topology. A group equipped with a group topology is called a topological group. When we have two topologies \(T_1, T_2\) on a set S, we write \(T_1 \leq T_2\) if \(T_2\) is finer than \(T_1\), which gives a partial order on the set of topologies on a given set. Prove or disprove the following statement: for a give group \(G\), there exists a unique minimal group topology on \(G\) (minimal with respect to the partial order we described above) so that \(G\) is a Hausdorff space?

The best solution was submitted by 이정환 (수리과학과 2015학번). Congratulations!

Here is his solution of problem 2019-10.

An incomplete solutions were submitted by 채지석 (수리과학과 2016학번, +2).

GD Star Rating
loading...

2019-11 Smallest prime

Find the smallest prime number \( p \geq 5 \) such that there exist no integer coefficient polynomials \( f \) and \( g \) satisfying
\[
p | ( 2^{f(n)} + 3^{g(n)})
\]
for all positive integers \( n \).

GD Star Rating
loading...