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Problem.

Let G be a group. A topology on G is said to be a group topology if the map µ : G×G→ G

defined by µ(g, h) := g−1h is continuous with respect to this topology where G×G is equipped with

the product topology. A group equipped with a group topology is called a topological group.

When we have two topologies T1, T2 on a set S, we write T1 ≤ T2 if T2 is finer than T1, which

gives a partial order on the set of all topologies on a given set S. Prove or disprove the following

statement. : For a given group G, there exists a unique minimal group topology on G (minimal

with respect to the partial order we described above).

Solution.

We can answer to this question and it will be different largely depending on whether the defini-

tion of group topology contains the T0 separation axiom, since many authors includes the separation

axioms for the definition of group topology, such as T0 separation axiom or Hausdorff property.

(1) The case that the definition of group topology does not contain the T0 separation axiom. :

Let T (G) be the collection of all group topologies on G and we can give a partial order on T (G)

by the inclusion. Note that they don’t need to satisfy the T0 property. It is clear that the trivial

topology Tt := {∅, G} is a group topology on G. Since every topology on G is finer than the trivial

topology on G, Tt is not only a minimal element, but also the minimum element of the partially

ordered set (T (G),⊆). Thus, there exists a unique minimal group topology on G and explicitly, it

is the trivial topology on G for this case.

(2) The case that the definition of group topology contains the T0 separation axiom. :

Let H(G) be the collection of all group topologies on G with the T0 separation axiom and we can

also give a partial order on H(G) by the inclusion. In this case, the trivial topology on G does not

belong to H(G). By the following useful lemma, all group topologies that belong to H(G) satisfy

the Hausdorff property.

Lemma 1.

Let G be a group and T be a group topology on G. Then, T.F.A.E. :
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1. T satisfies the T0 property.

2. T satisfies the T1 property.

3. T satisfies the T2 property, i.e., (G, T ) is Hausdorff.

4. T satisfies the T3 property, i.e., (G, T ) is regular.

5. T satisfies the T3 1
2

property, i.e., (G, T ) is completely regular.

Now, let’s construct a group that does not satisfy the main statement of the problem. Let’s

recall the definition of projective linear group and projective special linear group.

Definition 1.

Let F be the underlying field.

1. Let Zn(F) := {tIn : t ∈ F×} be the center of the general linear group GLn(F). Then, Zn(F) is

a closed normal subgroup of GLn(F). The quotient group endowed with the quotient topology,

which is induced from the usual topology on GLn(F), is called the projective linear group

over F and it is denoted by PGLn(F).

2. Let SZn(F) := {tIn : t ∈ F, tn = 1} be the center of the special linear group SLn(F). Then,

SZn(F) is a closed normal subgroup of SLn(F). The quotient group endowed with the quotient

topology, which is induced from the usual topology on SLn(F), is called the projective

special linear group over F and it is denoted by PSLn(F).

Note that both the real number field R and the p-adic number field Qp, for some prime number

p, are completions of Q and they are induced from different metric topology on Q. Denote G1 :=

PSL2(R) and G2 := PSL2(Qp) and suppose they are endowed with the quotient topologies induced

from the usual topologies. We will use the notation that Gi is the group topology on Gi for i ∈ {1, 2}.
Let’s take a group Γ := PSL2(Q). Define maps ıi : Γ ↪→ Gi, i ∈ {1, 2} by inclusion maps and

note that Γ can be embedded densely into both G1 and G2 by the above inclusion maps. Now, let’s

give 2 topologies T1 and T2 on Γ as follows. : Take a topology Ti on Γ be the pull-back topology

induced from the embedding ıi : Γ ↪→ Gi, i.e.,

Ti = ı∗i (Gi) :=
{

(ıi)
−1 (U) : U ∈ Gi

}
, i ∈ {1, 2} .

It is possible to define the notion of completeness and completion of a given topological group.

Definition 2.

Let G be a topological group and {gα : α ∈ A} be a net in G.
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1. {gα : α ∈ A} is a left Cauchy net in G if for every open neighborhood U of 1G in G, there

exists α0 ∈ A such that

g−1α · gβ ∈ U for all α, β > α0.

2. {gα : α ∈ A} is a right Cauchy net in G if for every open neighborhood U of 1G in G, there

exists α0 ∈ A such that

gα · g−1β ∈ U for all α, β > α0.

3. {gα : α ∈ A} is a Cauchy net in G if it is both left Cauchy and right Cauchy in G.

It is not difficult to prove the following basic properties.

Proposition 1.

1. Let G be a dense subgroup of a topological group H. If {gα : α ∈ A} is a net in G that

converges to some element h ∈ H, then {gα : α ∈ A} is a Cauchy net in G.

2. Let ϕ : G → H be a continuous group homomorphism, i.e., a topological group homomor-

phism. If {gα : α ∈ A} is a (left/right) Cauchy net in G, then {ϕ(gα) : α ∈ A} is also a

(left/right) Cauchy net in H.

Definition 3.

A topological group G is (Rǎikov) complete if every Cauchy net in G converges in G.

We omit the tedious proof of the next theorems.

Theorem 1 (The existence of Rǎikov completion).

For every Hausdorff topological group G, there exist a complete Hausdorff topological group G̃

and a topological embedding i : G ↪→ G̃ such that i(G) is dense in G̃.

Theorem 2 (The universal property of Rǎikov completion).

If G is a Hausdorff topological group and ϕ : G → H is a topological group homomorphism,

where H is a complete Hausdorff topological group, then there exists a unique topological group

homomorphism ϕ̃ : G̃→ H such that ϕ = ϕ̃ ◦ i.

G G̃

H

i

ϕ
∃! ϕ̃

3



From the Theorem 2, we can prove the following useful result.

Corollary 1.

Let G be a Hausdorff topological group and ıi : G ↪→ Hi be topological embeddings, where Hi

are complete Hausdorff topological groups, for i ∈ {1, 2}. Then, H1 and H2 are topological group

isomorphic.

Hence, for any given Hausdorff topological group G, we can define the (Rǎikov) completion

(G̃, i) of G, up to topological group isomorphisms, as a pair of complete Hausdorff topological group

G̃ and a topological embedding i : G ↪→ G̃ s.t. i(G) is dense in G̃.

Now, let’s return to our main problem. It’s obvious that both (G1,G1) and (G2,G2) are locally

compact groups and therefore they are complete from the well-known fact that every locally com-

pact group is complete. From the uniqueness of completion of topological groups, we can observe

that the topological group (Gi,Gi) is the completion of (Γ, Ti) for i ∈ {1, 2}. Since the topologies

T1 and T2 induce different completions of Γ, we get T1 6= T2.

We are left to show that the topologies T1 and T2 are minimal in the partially ordered set

of all Hausdorff group topologies on Γ, H(Γ). Let’s show that the usual topology Gi is minimal on

Gi. I want to invoke some awesome results from the paper, “Equicontinuous Actions of Semisimple

Groups”, written by Uri Bader and Tsachik Gelander.

Theorem 3.

Let G be a semi-simple group and H be any Hausdorff topological group. Also, let ϕ : G→ H be

a topological group homomorphism. Then, the image ϕ(G) is closed in H. If further G is separable,

then the induced map

ϕ̃ : G/ ker(ϕ)→ ϕ(G)

is a homeomorphism.

From this theorem, we can prove the following useful property.

Corollary 2.

Every factor group of a separable semi-simple group is topologically minimal, i.e., the endowed

group topology is minimal.

Proof.

Let G be a separable semi-simple group and N be a closed normal subgroup of G. Denote the

quotient topology on the factor group G/N by T . Let S be a coarser Hausdorff group topology on

G/N . By setting H := (G/N,S) and consider the canonical projection π : G� H. Since π is con-

tinuous, ker(π) = N and G is separable, the induced map π̃ : (G/N, T )→ H is a homeomorphism
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by the Theorem 3. Hence, we obtain T = S and this yields the topological minimality of T on

the factor group G/N .

�

Since Q is dense in both R and Qp, Σ := SL2 (Q) is a dense subgroup of both F1 := SL2 (R)

and F2 := SL2 (Qp). Thus, both F1 and F2 are separable topological groups because Σ is countable.

Let’s review some basic notions in the field of algebraic geometry.

Definition 4.

1. An algebraic group or a group variety is a group G that is an algebraic variety such that

the maps m : G × G → G and i : G → G, given by m(g, h) := gh and i(g) := g−1, are

morphisms of algebraic varieties, i.e., regular maps on algebraic varieties. Here, we give the

Zariski topology on G as an algebraic variety.

2. An algebraic subgroup of an algebraic group G is a closed subgroup under the Zariski

topology on G.

3. For any algebraic group G, denote by R(G) the identity component of the unique maximal

normal solvable subgroup of G. Then, R(G), called the radical of G, is the unique maximal

normal solvable, connected subgroup of G.

4. An algebraic group G is called semi-simple if its radical R(G) is trivial, i.e., R(G) = {1G}.

It is well-known that for any field F, the special linear group over F, SLn(F) is semi-simple.

Therefore, both F1 and F2 are separable semi-simple groups. From the Corollary 2, the factor

groups G1 = PSL2(R) = SL2(R)/SZ2(R) and G2 = PSL2(Qp) = SL2(Qp)/SZ2(Qp) are topologi-

cally minimal. Thus, the usual topology Gi is minimal on Gi.

Claim. Both T1 and T2 are minimal Hausdorff group topologies on Γ.

Proof of Claim.

Suppose S is any coarser Hausdorff group topology on Γ and let (H,H) be the completion of

(Γ, S) with a topological group embedding j : (Γ, S) ↪→ (H,H). Also, let i : (Γ, T1) ↪→ (G1,G1) be a

topological group embedding that embeds the group Γ densely into G1. Define a map k : (Γ, T1)→
(Γ, S) which is defined by the identity map and it is clearly a continuous map since S is coarser

than T1. Let f := j ◦ k : (Γ, T1) ↪→ (H,H). By the universal property of Raǐkov completion, there

exists a unique topological group homomorphism f̃ : (G1,G1)→ (H,H) s.t. f = f̃ ◦ i.
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(Γ, T1) (G1,G1)

(H,H)

i

f
∃! f̃

From the definition of pull-back topology, note that a map ϕ : (X, TX) → (Y, TY ) of topo-

logical spaces is continuous if and only if ϕ∗(TY ) :=
{
ϕ−1(U) : U ∈ TY

}
⊆ TX . Since the map

f̃ : (G1,G1)→ (H,H) is continuous, we get f̃∗(H) ⊆ G1. The minimality of G1 yields f̃∗(H) = G1.
Then, we can deduce that

T1 = i∗(G1) = i∗
{
f̃∗(H)

}
=
(
f̃ ◦ i

)∗
(H) = f∗(H) = j∗(H) =

{
j−1 (j(Γ) ∩ V ) : V ∈ H

}
= S,

since j is a topological embedding. This implies that T1 is a minimal Hausdorff group topology on

Γ and we can show that T2 is also a minimal Hausdorff group topology on Γ by exactly the same

argument.

Hence, the group Γ = PSL2(Q) admits more than one minimal Hausdorff group topologies on

Γ (= T1 and T2). Therefore, there exists a group that admits a minimal Hausdorff group topology,

but it is not unique. This completes our solution to the given problem. �
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