KAIST Math POW 2019-10

2015**** Jeonghwan, Lee

May 29, 2019

Problem.

Let G be a group. A topology on G is said to be a **group topology** if the map $\mu : G \times G \to G$ defined by $\mu(g, h) := g^{-1}h$ is continuous with respect to this topology where $G \times G$ is equipped with the product topology. A group equipped with a group topology is called a **topological group**. When we have two topologies T_1, T_2 on a set S, we write $T_1 \leq T_2$ if T_2 is finer than T_1 , which gives a partial order on the set of all topologies on a given set S. Prove or disprove the following statement. : For a given group G, there exists a *unique* minimal group topology on G (minimal with respect to the partial order we described above).

Solution.

We can answer to this question and it will be different largely depending on whether the definition of group topology contains the T_0 separation axiom, since many authors includes the separation axioms for the definition of group topology, such as T_0 separation axiom or Hausdorff property.

(1) The case that the definition of group topology does not contain the T_0 separation axiom. :

Let $\mathcal{T}(G)$ be the collection of all group topologies on G and we can give a partial order on $\mathcal{T}(G)$ by the *inclusion*. Note that they don't need to satisfy the T_0 property. It is clear that the *trivial* topology $\mathcal{T}_t := \{\emptyset, G\}$ is a group topology on G. Since every topology on G is finer than the trivial topology on G, \mathcal{T}_t is not only a *minimal element*, but also the *minimum element* of the partially ordered set $(\mathcal{T}(G), \subseteq)$. Thus, there exists a *unique* minimal group topology on G and explicitly, it is the *trivial topology* on G for this case.

(2) The case that the definition of group topology contains the T_0 separation axiom. :

Let $\mathcal{H}(G)$ be the collection of all group topologies on G with the T_0 separation axiom and we can also give a partial order on $\mathcal{H}(G)$ by the inclusion. In this case, the trivial topology on G does not belong to $\mathcal{H}(G)$. By the following useful lemma, all group topologies that belong to $\mathcal{H}(G)$ satisfy the Hausdorff property.

Lemma 1.

Let G be a group and \mathcal{T} be a group topology on G. Then, T.F.A.E. :

- 1. \mathcal{T} satisfies the T_0 property.
- 2. \mathcal{T} satisfies the T_1 property.
- 3. \mathcal{T} satisfies the T_2 property, i.e., (G, \mathcal{T}) is Hausdorff.
- 4. \mathcal{T} satisfies the T_3 property, i.e., (G, \mathcal{T}) is regular.
- 5. \mathcal{T} satisfies the $T_{3\frac{1}{2}}$ property, i.e., (G, \mathcal{T}) is completely regular.

Now, let's construct a group that does not satisfy the main statement of the problem. Let's recall the definition of *projective linear group* and *projective special linear group*.

Definition 1.

Let \mathbb{F} be the underlying field.

- 1. Let $Z_n(\mathbb{F}) := \{tI_n : t \in \mathbb{F}^{\times}\}$ be the *center* of the general linear group $GL_n(\mathbb{F})$. Then, $Z_n(\mathbb{F})$ is a closed normal subgroup of $GL_n(\mathbb{F})$. The quotient group *endowed with the quotient topology*, which is induced from the usual topology on $GL_n(\mathbb{F})$, is called the **projective linear group** over \mathbb{F} and it is denoted by $PGL_n(\mathbb{F})$.
- 2. Let $SZ_n(\mathbb{F}) := \{tI_n : t \in \mathbb{F}, t^n = 1\}$ be the *center* of the special linear group $SL_n(\mathbb{F})$. Then, $SZ_n(\mathbb{F})$ is a closed normal subgroup of $SL_n(\mathbb{F})$. The quotient group endowed with the quotient topology, which is induced from the usual topology on $SL_n(\mathbb{F})$, is called the **projective special linear group** over \mathbb{F} and it is denoted by $PSL_n(\mathbb{F})$.

Note that both the real number field \mathbb{R} and the *p*-adic number field \mathbb{Q}_p , for some prime number p, are completions of \mathbb{Q} and they are induced from different metric topology on \mathbb{Q} . Denote $G_1 := PSL_2(\mathbb{R})$ and $G_2 := PSL_2(\mathbb{Q}_p)$ and suppose they are endowed with the quotient topologies induced from the usual topologies. We will use the notation that \mathcal{G}_i is the group topology on G_i for $i \in \{1, 2\}$.

Let's take a group $\Gamma := PSL_2(\mathbb{Q})$. Define maps $\iota_i : \Gamma \hookrightarrow G_i, i \in \{1, 2\}$ by *inclusion maps* and note that Γ can be *embedded densely* into both G_1 and G_2 by the above inclusion maps. Now, let's give 2 topologies T_1 and T_2 on Γ as follows. : Take a topology T_i on Γ be the *pull-back topology* induced from the embedding $\iota_i : \Gamma \hookrightarrow G_i, i.e.$,

$$T_i = \imath_i^*(\mathcal{G}_i) := \left\{ (\imath_i)^{-1}(U) : U \in \mathcal{G}_i \right\}, i \in \{1, 2\}.$$

It is possible to define the notion of *completeness* and *completion* of a given topological group.

Definition 2.

Let G be a topological group and $\{g_{\alpha} : \alpha \in A\}$ be a net in G.

1. $\{g_{\alpha} : \alpha \in A\}$ is a **left Cauchy net** in G if for every open neighborhood U of 1_G in G, there exists $\alpha_0 \in A$ such that

$$g_{\alpha}^{-1} \cdot g_{\beta} \in U$$
 for all $\alpha, \beta > \alpha_0$.

2. $\{g_{\alpha} : \alpha \in A\}$ is a **right Cauchy net** in *G* if for every open neighborhood *U* of 1_G in *G*, there exists $\alpha_0 \in A$ such that

$$g_{\alpha} \cdot g_{\beta}^{-1} \in U$$
 for all $\alpha, \beta > \alpha_0$.

3. $\{g_{\alpha} : \alpha \in A\}$ is a **Cauchy net** in G if it is both left Cauchy and right Cauchy in G.

It is not difficult to prove the following basic properties.

Proposition 1.

- 1. Let G be a dense subgroup of a topological group H. If $\{g_{\alpha} : \alpha \in A\}$ is a net in G that converges to some element $h \in H$, then $\{g_{\alpha} : \alpha \in A\}$ is a Cauchy net in G.
- Let φ : G → H be a continuous group homomorphism, i.e., a topological group homomorphism. If {g_α : α ∈ A} is a (left/right) Cauchy net in G, then {φ(g_α) : α ∈ A} is also a (left/right) Cauchy net in H.

Definition 3.

A topological group G is (Raikov) complete if every Cauchy net in G converges in G.

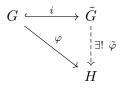
We omit the tedious proof of the next theorems.

Theorem 1 (The existence of Raikov completion).

For every Hausdorff topological group G, there exist a complete Hausdorff topological group \tilde{G} and a topological embedding $i: G \hookrightarrow \tilde{G}$ such that i(G) is dense in \tilde{G} .

Theorem 2 (The universal property of Raikov completion).

If G is a Hausdorff topological group and $\varphi : G \to H$ is a topological group homomorphism, where H is a complete Hausdorff topological group, then there exists a unique topological group homomorphism $\tilde{\varphi} : \tilde{G} \to H$ such that $\varphi = \tilde{\varphi} \circ i$.



From the **Theorem 2**, we can prove the following useful result.

Corollary 1.

Let G be a Hausdorff topological group and $i_i : G \hookrightarrow H_i$ be topological embeddings, where H_i are complete Hausdorff topological groups, for $i \in \{1, 2\}$. Then, H_1 and H_2 are topological group isomorphic.

Hence, for any given Hausdorff topological group G, we can define the (**Raikov**) completion (\tilde{G}, i) of G, up to topological group isomorphisms, as a pair of complete Hausdorff topological group \tilde{G} and a topological embedding $i : G \hookrightarrow \tilde{G}$ s.t. i(G) is dense in \tilde{G} .

Now, let's return to our main problem. It's obvious that both (G_1, \mathcal{G}_1) and (G_2, \mathcal{G}_2) are locally compact groups and therefore they are complete from the well-known fact that every locally compact group is complete. From the uniqueness of completion of topological groups, we can observe that the topological group (G_i, \mathcal{G}_i) is the completion of (Γ, T_i) for $i \in \{1, 2\}$. Since the topologies T_1 and T_2 induce different completions of Γ , we get $T_1 \neq T_2$.

We are left to show that the topologies T_1 and T_2 are minimal in the partially ordered set of all Hausdorff group topologies on Γ , $\mathcal{H}(\Gamma)$. Let's show that the usual topology \mathcal{G}_i is minimal on G_i . I want to invoke some awesome results from the paper, "Equicontinuous Actions of Semisimple Groups", written by Uri Bader and Tsachik Gelander.

Theorem 3.

Let G be a semi-simple group and H be any Hausdorff topological group. Also, let $\varphi : G \to H$ be a topological group homomorphism. Then, the image $\varphi(G)$ is closed in H. If further G is separable, then the induced map

$$\tilde{\varphi}: G/\ker(\varphi) \to \varphi(G)$$

is a homeomorphism.

From this theorem, we can prove the following useful property.

Corollary 2.

Every factor group of a separable semi-simple group is topologically minimal, i.e., the endowed group topology is minimal.

Proof.

Let G be a separable semi-simple group and N be a closed normal subgroup of G. Denote the quotient topology on the factor group G/N by T. Let S be a coarser Hausdorff group topology on G/N. By setting H := (G/N, S) and consider the canonical projection $\pi : G \to H$. Since π is continuous, ker $(\pi) = N$ and G is separable, the induced map $\tilde{\pi} : (G/N, T) \to H$ is a homeomorphism

by the **Theorem 3**. Hence, we obtain T = S and this yields the *topological minimality* of T on the factor group G/N.

Since \mathbb{Q} is dense in both \mathbb{R} and \mathbb{Q}_p , $\Sigma := SL_2(\mathbb{Q})$ is a dense subgroup of both $F_1 := SL_2(\mathbb{R})$ and $F_2 := SL_2(\mathbb{Q}_p)$. Thus, both F_1 and F_2 are *separable* topological groups because Σ is countable. Let's review some basic notions in the field of *algebraic geometry*.

Definition 4.

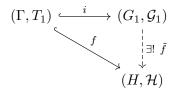
- 1. An algebraic group or a group variety is a group G that is an algebraic variety such that the maps $m : G \times G \to G$ and $i : G \to G$, given by m(g,h) := gh and $i(g) := g^{-1}$, are morphisms of algebraic varieties, *i.e.*, regular maps on algebraic varieties. Here, we give the Zariski topology on G as an algebraic variety.
- 2. An algebraic subgroup of an algebraic group G is a closed subgroup under the Zariski topology on G.
- 3. For any algebraic group G, denote by $\mathcal{R}(G)$ the *identity component* of the unique maximal normal solvable subgroup of G. Then, $\mathcal{R}(G)$, called the **radical** of G, is the unique maximal normal solvable, connected subgroup of G.
- 4. An algebraic group G is called **semi-simple** if its radical $\mathcal{R}(G)$ is trivial, *i.e.*, $\mathcal{R}(G) = \{1_G\}$.

It is well-known that for any field \mathbb{F} , the special linear group over \mathbb{F} , $SL_n(\mathbb{F})$ is semi-simple. Therefore, both F_1 and F_2 are separable semi-simple groups. From the **Corollary 2**, the factor groups $G_1 = PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/SZ_2(\mathbb{R})$ and $G_2 = PSL_2(\mathbb{Q}_p) = SL_2(\mathbb{Q}_p)/SZ_2(\mathbb{Q}_p)$ are topologically minimal. Thus, the usual topology \mathcal{G}_i is minimal on G_i .

Claim. Both T_1 and T_2 are minimal Hausdorff group topologies on Γ .

Proof of Claim.

Suppose S is any coarser Hausdorff group topology on Γ and let (H, \mathcal{H}) be the completion of (Γ, S) with a topological group embedding $j : (\Gamma, S) \hookrightarrow (H, \mathcal{H})$. Also, let $i : (\Gamma, T_1) \hookrightarrow (G_1, \mathcal{G}_1)$ be a topological group embedding that embeds the group Γ densely into G_1 . Define a map $k : (\Gamma, T_1) \to (\Gamma, S)$ which is defined by the *identity map* and it is clearly a continuous map since S is coarser than T_1 . Let $f := j \circ k : (\Gamma, T_1) \hookrightarrow (H, \mathcal{H})$. By the universal property of Raikov completion, there exists a unique topological group homomorphism $\tilde{f} : (G_1, \mathcal{G}_1) \to (H, \mathcal{H})$ s.t. $f = \tilde{f} \circ i$.



From the definition of *pull-back topology*, note that a map $\varphi : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ of topological spaces is continuous if and only if $\varphi^*(\mathcal{T}_Y) := \{\varphi^{-1}(U) : U \in \mathcal{T}_Y\} \subseteq \mathcal{T}_X$. Since the map $\tilde{f}: (G_1, \mathcal{G}_1) \to (H, \mathcal{H})$ is continuous, we get $\tilde{f}^*(\mathcal{H}) \subseteq \mathcal{G}_1$. The *minimality* of \mathcal{G}_1 yields $\tilde{f}^*(\mathcal{H}) = \mathcal{G}_1$. Then, we can deduce that

$$T_1 = i^*(\mathcal{G}_1) = i^*\left\{\tilde{f}^*(\mathcal{H})\right\} = \left(\tilde{f} \circ i\right)^*(\mathcal{H}) = f^*(\mathcal{H}) = j^*(\mathcal{H}) = \left\{j^{-1}\left(j(\Gamma) \cap V\right) : V \in \mathcal{H}\right\} = S,$$

since j is a topological embedding. This implies that T_1 is a minimal Hausdorff group topology on Γ and we can show that T_2 is also a minimal Hausdorff group topology on Γ by exactly the same argument.

Hence, the group $\Gamma = PSL_2(\mathbb{Q})$ admits more than one minimal Hausdorff group topologies on Γ (= T_1 and T_2). Therefore, there exists a group that admits a minimal Hausdorff group topology, but it is not *unique*. This completes our solution to the given problem.