2019-10 Is there canonical topology for topological groups?

Let $$G$$ be a group. A topology on $$G$$ is said to be a group topology if the map $$\mu: G \times G \to G$$ defined by $$\mu(g, h) = g^{-1}h$$ is continuous with respect to this topology where $$G \times G$$ is equipped with the product topology. A group equipped with a group topology is called a topological group. When we have two topologies $$T_1, T_2$$ on a set S, we write $$T_1 \leq T_2$$ if $$T_2$$ is finer than $$T_1$$, which gives a partial order on the set of topologies on a given set. Prove or disprove the following statement: for a give group $$G$$, there exists a unique minimal group topology on $$G$$ (minimal with respect to the partial order we described above) so that $$G$$ is a Hausdorff space?

GD Star Rating

Solution: 2019-09 Discrete entropy

Suppose that $$X$$ is a discrete random variable on the set $$\{ a_1, a_2, \dots \}$$ with $$P(X=a_i) = p_i$$. Define the discrete entropy
$H(X) = -\sum_{n=1}^{\infty} p_i \log p_i.$
Find constants $$C_1, C_2 \geq 0$$ such that
$e^{2H(X)} \leq C_1 Var(X) + C_2$
holds for any $$X$$.

The best solution was submitted by 길현준 (2018학번). Congratulations!

Here is his solution of problem 2019-09.

Alternative solutions were submitted by 최백규 (생명과학과 2016학번, +3). Incomplete solutions were submitted by, 이정환 (수리과학과 2015학번, +2), 채지석 (수리과학과 2016학번, +2).

GD Star Rating