# 2019-10 Is there canonical topology for topological groups?

Let $$G$$ be a group. A topology on $$G$$ is said to be a group topology if the map $$\mu: G \times G \to G$$ defined by $$\mu(g, h) = g^{-1}h$$ is continuous with respect to this topology where $$G \times G$$ is equipped with the product topology. A group equipped with a group topology is called a topological group. When we have two topologies $$T_1, T_2$$ on a set S, we write $$T_1 \leq T_2$$ if $$T_2$$ is finer than $$T_1$$, which gives a partial order on the set of topologies on a given set. Prove or disprove the following statement: for a give group $$G$$, there exists a unique minimal group topology on $$G$$ (minimal with respect to the partial order we described above) so that $$G$$ is a Hausdorff space?

GD Star Rating
2019-10 Is there canonical topology for topological groups?, 3.6 out of 5 based on 7 ratings
This entry was posted in problem on .

Is there any further assumption for a group topology on $G$ such as $T_1$ separation axiom or Hausdorff property?