Solution: 2013-20 Eigenvalues of Hermitian matrices

Let \( A, B, C = A+B \) be \( N \times N \) Hermitian matrices. Let \( \alpha_1 \geq \cdots \geq \alpha_N \), \( \beta_1 \geq \cdots \geq \beta_N \), \( \gamma_1 \geq \cdots \geq \gamma_N \) be the eigenvalues of \( A, B, C \), respectively. For any \( 1 \leq i, j \leq N \) with \( i+j -1 \leq N \), prove that
\[ \gamma_{i+j-1} \leq \alpha_i + \beta_j \]

The best solution was submitted by 진우영. Congratulations!

Similar solutions are submitted by 김호진(+3), 박민재(+3), 박훈민(+3), 정성진(+3). Thank you for your participation.

GD Star Rating
loading...