POW 2013-20 Eigenvalues of Hermitian matrices

Wooyoung Chin

November 18, 2013

Problem. Let *A*, *B*, *C* = *A*+*B* be *N*×*N* Hermitian matrices. Let $\alpha_1 \ge \cdots \ge \alpha_N$, $\beta_1 \ge \cdots \ge \beta_N$, $\gamma_1 \ge \cdots \ge \gamma_N$ be the eigenvalues of *A*, *B*, *C*, respectively. For any $1 \le i, j \le N$ with $i + j - 1 \le N$, prove that

$$\gamma_{i+j-1} \le \alpha_i + \beta_j$$

Solution.

Lemma 1. Let *M* be an $N \times N$ Hermitian matrix. Let $\lambda_1 \geq \cdots \geq \lambda_N$ be the eigenvalues of *M*. Then for each $1 \leq k \leq N$

- (1) There is a subspace V of \mathbb{C}^N with dim V = k such that for any $v \in V$ with $|v| = 1, \lambda_k \leq v^* M v$.
- (2) There is a subspace W of \mathbb{C}^N with dim W = N k + 1 such that for any $w \in W$ with |w| = 1, $w^*Mw \le \lambda_k$.

Proof. By Spectral Theorem, there is an orthonormal basis u_1, \dots, u_N of \mathbb{C}^N such that for each $1 \leq i \leq N$, u_i is an eigenvector corresponding to λ_i . For each $v = \sum_{i=1}^N a_i u_i \in \mathbb{C}^N$,

$$v^*Mv = v^*\left(\sum_{i=1}^N a_i\lambda_i u_i\right) = \sum_{i=1}^N \lambda_i |a_i|^2$$

Let *V* be the subspace spanned by u_1, \dots, u_k . Then for any $v = \sum_{i=1}^k a_i u_i \in V$ with |v| = 1, $v^* M v = \sum_{i=1}^k \lambda_i |a_i|^2 \ge \lambda_k$. This proves (1).

Let *W* be the subspace spanned by u_k, \dots, u_N . Note that the dimension of *W* is N-k+1. Then for any $w = \sum_{i=k}^{N} b_i u_i \in W$ with |w| = 1, $w^* M w = \sum_{i=k}^{N} \lambda_i |b_i|^2 \leq \lambda_k$. This proves (2).

By the Lemma, there are subspaces U, V, W of \mathbb{C}^N such that

- 1. dim U = N i + 1, and for any $v \in U$ with |v| = 1, $v^*Av \le \alpha_i$.
- 2. dim V = N j + 1, and for any $v \in V$ with |v| = 1, $v^*Bv \le \beta_j$.
- 3. dim W = i + j 1, and for any $v \in W$ with |v| = 1, $\gamma_{i+j-1} \leq v^* C v$.

Since dim(*U*) + dim(*V*) - dim($U \cap V$) = dim(U + V) $\leq N$, $N - (i + j - 2) \leq$ dim($U \cap V$). Because $N < \dim(U \cap V) + \dim(W)$, the space $U \cap V \cap W$ is nontrivial. So there is $v \neq 0$ such that $v^*Av \leq \alpha_i$, $v^*Bv \leq \beta_j$, and $\gamma_{i+j-1} \leq v^*Cv$. This implies

$$\gamma_{i+j-1} \leq v^*(A+B)v = v^*Av + v^*Bv \leq \alpha_i + \beta_j.$$