POW 2013-20 Eigenvalues of Hermitian matrices

Wooyoung Chin

November 18, 2013

Problem. Let $A, B, C=A+B$ be $N \times N$ Hermitian matrices. Let $\alpha_{1} \geq \cdots \geq \alpha_{N}$, $\beta_{1} \geq \cdots \geq \beta_{N}, \gamma_{1} \geq \cdots \geq \gamma_{N}$ be the eigenvalues of A, B, C, respectively. For any $1 \leq i, j \leq N$ with $i+j-1 \leq N$, prove that

$$
\gamma_{i+j-1} \leq \alpha_{i}+\beta_{j}
$$

Solution.
Lemma 1. Let M be an $N \times N$ Hermitian matrix. Let $\lambda_{1} \geq \cdots \geq \lambda_{N}$ be the eigenvalues of M. Then for each $1 \leq k \leq N$
(1) There is a subspace V of \mathbb{C}^{N} with $\operatorname{dim} V=k$ such that for any $v \in V$ with $|v|=1, \lambda_{k} \leq v^{*} M v$.
(2) There is a subspace W of \mathbb{C}^{N} with $\operatorname{dim} W=N-k+1$ such that for any $w \in W$ with $|w|=1, w^{*} M w \leq \lambda_{k}$.

Proof. By Spectral Theorem, there is an orthonormal basis u_{1}, \cdots, u_{N} of \mathbb{C}^{N} such that for each $1 \leq i \leq N, u_{i}$ is an eigenvector corresponding to λ_{i}. For each $v=$ $\sum_{i=1}^{N} a_{i} u_{i} \in \mathbb{C}^{N}$,

$$
v^{*} M v=v^{*}\left(\sum_{i=1}^{N} a_{i} \lambda_{i} u_{i}\right)=\sum_{i=1}^{N} \lambda_{i}\left|a_{i}\right|^{2} .
$$

Let V be the subspace spanned by u_{1}, \cdots, u_{k}. Then for any $v=\sum_{i=1}^{k} a_{i} u_{i} \in V$ with $|v|=1, v^{*} M v=\sum_{i=1}^{k} \lambda_{i}\left|a_{i}\right|^{2} \geq \lambda_{k}$. This proves (1).

Let W be the subspace spanned by u_{k}, \cdots, u_{N}. Note that the dimension of W is $N-k+1$. Then for any $w=\sum_{i=k}^{N} b_{i} u_{i} \in W$ with $|w|=1, w^{*} M w=\sum_{i=k}^{N} \lambda_{i}\left|b_{i}\right|^{2} \leq \lambda_{k}$. This proves (2).

By the Lemma, there are subspaces U, V, W of \mathbb{C}^{N} such that

1. $\operatorname{dim} U=N-i+1$, and for any $v \in U$ with $|v|=1, v^{*} A v \leq \alpha_{i}$.
2. $\operatorname{dim} V=N-j+1$, and for any $v \in V$ with $|v|=1, v^{*} B v \leq \beta_{j}$.
3. $\operatorname{dim} W=i+j-1$, and for any $v \in W$ with $|v|=1, \gamma_{i+j-1} \leq v^{*} C v$.

Since $\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)=\operatorname{dim}(U+V) \leq N, N-(i+j-2) \leq$ $\operatorname{dim}(U \cap V)$. Because $N<\operatorname{dim}(U \cap V)+\operatorname{dim}(W)$, the space $U \cap V \cap W$ is nontrivial. So there is $v \neq 0$ such that $v^{*} A v \leq \alpha_{i}, v^{*} B v \leq \beta_{j}$, and $\gamma_{i+j-1} \leq v^{*} C v$. This implies

$$
\gamma_{i+j-1} \leq v^{*}(A+B) v=v^{*} A v+v^{*} B v \leq \alpha_{i}+\beta_{j} .
$$

