Daily Archives: March 15, 2013

Solution: 2013-01 Inequality involving eigenvalues and traces

Let \(A, B\) be \(N \times N\) symmetric matrices with eigenvalues \(\lambda_1^A \leq \lambda_2^A \leq \cdots \leq \lambda_N^A\) and \(\lambda_1^B \leq \lambda_2^B \leq \cdots \leq \lambda_N^B\). Prove that
\[ \sum_{i=1}^N |\lambda_i^A – \lambda_i^B|^2 \leq Tr (A-B)^2 \]

The best solution was submitted by 라준현, 08학번. Congratulations!

Alternative solutions were submitted by 김호진(09학번, +3), 서기원(09학번, +3), 곽걸담(11학번, +3), 김정민(12학번, +2), 홍혁표(13학번, +2). Thank you for your participation.

GD Star Rating
loading...