POW 2013-01 Solution 20080286 Joonhyun La (Mathematical Science)

1. Problem

Let A, B be $N \times N$ symmetric matrices with eigenvalues $\lambda_{1}^{A} \leq \lambda_{2}^{A} \leq \cdots \leq \lambda_{N}^{A}$ and $\lambda_{1}^{B} \leq \lambda_{2}^{B} \leq \cdots \leq \lambda_{N}^{B}$. Prove that

$$
\sum_{i=1}^{N}\left|\lambda_{i}^{A}-\lambda_{i}^{B}\right|^{2} \leq \operatorname{tr}(A-B)^{2}
$$

2. Solution

First, we may assume that both λ_{1}^{A} and λ_{1}^{B} are nonnegative; for any t if we let $C=A+t I$ and $D=B+t I$, where I is the $N \times N$ identity matrix, then C and D are $N \times N$ symmetric matrices with eigenvalues $\lambda_{i}^{C}=\lambda_{i}^{A}+t$ and $\lambda_{i}^{D}=\lambda_{i}^{B}+t$ for $i=1,2, \cdots, N$. Thus, $\lambda_{i}^{C}-\lambda_{i}^{D}=\lambda_{i}^{A}-\lambda_{i}^{B}$ and $C-D=A-B$, so the values of left-handed side and right-handed side of the desired inequality remain unchanged if we substitute C and D instead of A and B, respectively. Taking sufficiently large t, we may assume that all eigenvalues of C and D are nonnegative.

Next, we may assume that A may be considered as a diagonal one, with $A_{i i}=\lambda_{i}^{A}$. This is because of the fact that the left-handed side and right-handed side of the desired inequality are invariant under similarity transformation, and since A is symmetric $A=P^{T} D P$ for some orthogonal matrix P, and a diagonal matrix D with $D_{i i}=\lambda_{i}^{A}$.

Therefore we may assume that $A_{i j}=\lambda_{i}^{A}$ if $i=j$ and 0 if $i \neq j$. Then since B is also a symmetric matrix, $B=P^{T} D_{B} P$ for some orthogonal matrix $P=\left(e_{i j}\right)$ and a diagonal matrix D_{B} with $D_{B i i}=\lambda_{i}^{B}$. Computing the entries of B, we get

$$
\begin{equation*}
B_{i j}=\sum_{k=1}^{N} \lambda_{k}^{B} e_{k i} e_{k j} \tag{1}
\end{equation*}
$$

Since $A-B$ is also symmetric, we have

$$
\begin{equation*}
\operatorname{tr}(A-B)^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N}(A-B)_{i j}^{2} \tag{2}
\end{equation*}
$$

Substituting (1) to (2), we get

$$
\begin{gathered}
\operatorname{tr}(A-B)^{2}=\sum_{i=1}^{N}\left(\lambda_{i}^{A}-\sum_{k=1}^{N} \lambda_{k}^{B} e_{k i}^{2}\right)^{2}+\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N}\left(\sum_{k=1}^{N} \lambda_{k}^{B} e_{k i} e_{k j}\right)^{2} \\
=\sum_{i=1}^{N}\left(\lambda_{i}^{A}\right)^{2}-2 \sum_{i=1}^{N} \lambda_{i}^{A}\left(\sum_{k=1}^{N} \lambda_{k}^{B} e_{k i}{ }^{2}\right)+\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\sum_{k=1}^{N} \lambda_{k}^{B} e_{k i} e_{k j}\right)^{2}
\end{gathered}
$$

But

$$
\begin{gathered}
\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\sum_{k=1}^{N} \lambda_{k}^{B} e_{k i} e_{k j}\right)^{2}=\sum_{k=1}^{N} \sum_{l=1}^{N} \lambda_{k}^{B} \lambda_{l}^{B}\left(\sum_{i=1}^{N} \sum_{j=1}^{N} e_{k i} e_{k j} e_{l i} e_{l j}\right) \\
=\sum_{k=1}^{N} \sum_{l=1}^{N} \lambda_{k}^{B} \lambda_{l}^{B} \sum_{i=1}^{N}\left(e_{k i} e_{l i}\right) \sum_{j=1}^{N}\left(e_{k j} e_{l j}\right)=\sum_{i=1}^{N}\left(\lambda_{i}^{B}\right)^{2}
\end{gathered}
$$

Since

$$
\sum_{i=1}^{N}\left(e_{k i} e_{l i}\right)=<\left(e_{k 1}, e_{k 2}, \cdots, e_{k N}\right),\left(e_{l 1}, e_{l 2}, \cdots, e_{l N}\right)>=\delta_{k l}
$$

Where $\delta_{k l}{ }^{i=1}$ equals 1 if $k=l$ and equals 0 if $k \neq l$, due to orthogonality of $P=\left(e_{i j}\right)$.

Consequently,

$$
\begin{gathered}
\operatorname{tr}(A-B)^{2}=\sum_{i=1}^{N}\left(\left(\lambda_{i}^{A}\right)^{2}+\left(\lambda_{i}^{B}\right)^{2}\right)-2 \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i}^{A} \lambda_{j}^{B}\left(e_{j i}\right)^{2} \\
=\sum_{i=1}^{N}\left(\lambda_{i}^{A}-\lambda_{i}^{B}\right)^{2}+2\left(\sum_{i=1}^{N} \lambda_{i}^{A} \lambda_{i}^{B}-\sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i}^{A} \lambda_{j}^{B}\left(e_{j i}\right)^{2}\right)
\end{gathered}
$$

And it suffices to show that

$$
\begin{equation*}
\sum_{i=1}^{N} \lambda_{i}^{A} \lambda_{i}^{B}-\sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i}^{A} \lambda_{j}^{B}\left(e_{j i}\right)^{2} \geq 0 \tag{3}
\end{equation*}
$$

Inequality (3) immediately follows from the following lemma;
Lemma Let $0 \leq x_{1} \leq \cdots \leq x_{N}, 0 \leq y_{1} \leq \cdots \leq y_{N}$ and $A=\left(a_{i j}\right)$ be an $N \times N$ matrix with $a_{i j} \geq 0$ for all i and j, and $\sum_{i=1}^{N} a_{i j}=1 \quad$ for all j and $\sum_{j=1}^{N} a_{i j}=1 \quad$ for all i. Then

$$
\sum_{i=1}^{N} x_{i} y_{i} \geq \sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} a_{i j} y_{j}
$$

Proof of the Lemma) I have referred [M].
Let $z_{1}=x_{1}, z_{i}=x_{i}-x_{i-1}$ for $i \geq 2$ and $w_{1}=y_{1}, w_{j}=y_{j}-y_{j-1}$ for $j \geq 2$.
Then

$$
\begin{aligned}
& \qquad \begin{aligned}
\sum_{i=1}^{N} x_{i} y_{i} & -\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} a_{i j} y_{j}=\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\delta_{i j}-a_{i j}\right) x_{i} y_{j} \\
& =\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\delta_{i j}-a_{i j}\right)\left(\sum_{r=1}^{i} z_{r}\right)\left(\sum_{s=1}^{j} w_{s}\right) \\
& =\sum_{r=1}^{N} \sum_{s=1}^{N} z_{r} w_{s}\left(\sum_{i=r}^{N} \sum_{j=s}^{N}\left(\delta_{i j}-a_{i j}\right)\right)
\end{aligned} \\
& \qquad \sum_{i=r}^{N} \sum_{j=s}^{N}\left(\delta_{i j}-a_{i j}\right) \geq 0 \quad \text { for every } r \text { and } s \text {. }
\end{aligned}
$$

If $r \geq s$, then

$$
\sum_{i=r}^{N} \sum_{j=s}^{N}\left(\delta_{i j}-a_{i j}\right)=(N-r+1)-\sum_{i=r}^{N} \sum_{j=s}^{N} a_{i j} \geq(N-r+1)-\sum_{i=r}^{N} \sum_{j=1}^{N} a_{i} j=0
$$

And similar argument works for $r \leq s$ case.
3. Reference
[M] Mirsky L., A trace inequality of John von Neuman, Monatshefte f"ur Math. 79 (1975), 303-306.

