Tag Archives: Subadditive

2014-03 Subadditive function

Let f:[0,)R be a function satisfying the following conditions:

(1) For any x,y0, f(x+y)f(x)+f(y).

(2) For any x[0,2], f(x) \geq x^2 – x .

Prove that, for any positive integer M and positive reals n_1, n_2, \cdots, n_M with n_1 + n_2 + \cdots + n_M = M , we have

f(n_1) + f(n_2) + \cdots + f(n_M) \geq 0.

GD Star Rating
loading...