Suppose that \( f: \mathbb{R} \to \mathbb{R} \) is a continuous function such that the sequence \( f(x), f(2x), f(3x), \dots \) converges to \( 0 \) for any \( x > 0 \). Prove or disprove that \[ \lim_{x \to \infty} f(x) = 0. \]
loading...
Suppose that \( f: \mathbb{R} \to \mathbb{R} \) is a continuous function such that the sequence \( f(x), f(2x), f(3x), \dots \) converges to \( 0 \) for any \( x > 0 \). Prove or disprove that \[ \lim_{x \to \infty} f(x) = 0. \]
Let \( f_n : [-1, 1] \to \mathbb{R} \) be a continuous function for \( n = 1, 2, 3, \dots \). Define
\[
g_n(y) := \log \int_{-1}^1 e^{y f_n(x)} dx.
\]
Suppose there exists a continuous function \( g: \mathbb{R} \to \mathbb{R} \) and \( y_0 \in \mathbb{R} \) such that \( \lim_{n \to \infty} g_n(y) = g(y) \) for all \( y \neq y_0 \). Prove or disprove that \( \lim_{n \to \infty} g_n(y_0) = g(y_0) \).
Let \( p_n \) be the \(n\)-th prime number, \( p_1 = 2, p_2 = 3, p_3 = 5, \dots \). Prove that the following series converges:
\[
\sum_{n=1}^{\infty} \frac{1}{p_n} \prod_{k=1}^n \frac{p_k -1}{p_k}.
\]
Let \(a_1,a_2,\ldots\) be an infinite sequence of positive real numbers such that \(\sum_{n=1}^\infty a_n\) converges. Prove that for every positive constant \(c\), there exists an infinite sequence \(i_1<i_2<i_3<\cdots\) of positive integers such that \(| i_n-cn^3| =O(n^2)\) and \(\sum_{n=1}^\infty \left( a_{i_n} (a_1^{1/3}+a_2^{1/3}+\cdots+a_{i_n}^{1/3})\right)\) converges.