Let \( p_n \) be the \(n\)-th prime number, \( p_1 = 2, p_2 = 3, p_3 = 5, \dots \). Prove that the following series converges:

\[

\sum_{n=1}^{\infty} \frac{1}{p_n} \prod_{k=1}^n \frac{p_k -1}{p_k}.

\]

**GD Star Rating**

*loading...*

Let \( p_n \) be the \(n\)-th prime number, \( p_1 = 2, p_2 = 3, p_3 = 5, \dots \). Prove that the following series converges:

\[

\sum_{n=1}^{\infty} \frac{1}{p_n} \prod_{k=1}^n \frac{p_k -1}{p_k}.

\]