Solution: 2024-20 Vanishing at infinity

Suppose that \( f: \mathbb{R} \to \mathbb{R} \) is a continuous function such that the sequence \( f(x), f(2x), f(3x), \dots \) converges to \( 0 \) for any \( x > 0 \). Prove or disprove that \[ \lim_{x \to \infty} f(x) = 0. \]

The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4). Congratulations!

Here is the best solution of problem 2024-20.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3). There was an incorrect soultion submitted.

GD Star Rating
loading...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.