Solution: 2024-07 Limit of a sequence

For fixed positive numbers \( x_1, x_2, \dots, x_m \), we define a sequence \( \{ a_n \} \) by \( a_n = x_n \) for \(n \leq m \) and
\[
a_n = a_{n-1}^r + a_{n-2}^r + \dots + a_{n-k}^r
\]
for \( n > m \), where \( r \in (0, 1) \). Find \( \lim_{n \to \infty} a_n \).

The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정 21학번, +4). Congratulations!

Here is the best solution of problem 2024-07.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 20학번, +3), 박지운 (KAIST 새내기과정학부 24학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +2), Sasa Sa (+3).

GD Star Rating
loading...