Daily Archives: October 12, 2024

Solution: 2024-13 Concave functions (revisited)

Let \(u_n(t)\), \(n=1,2…\) be a sequence of concave functions on \(\mathbb{R}\). Let \(g(t)\) be a differentiable function on \(\mathbb{R}\). Assume \(\liminf_{n\to\infty} u_n(t) \geq g(t)\) for every \(t\) and \(\lim_{n\to \infty} u_n(0) = g(0)\). Suppose \(u_n'(0)\) exist for \(n=1,2,…\). Compare \(\lim_{n\to \infty} u_n'(0)\) and \(g'(0)\).

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-13.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +2).

GD Star Rating
loading...