Define the sequence \( x_n \) by \( x_1 = 0 \) and
\[
x_n = x_{\lfloor n/2 \rfloor} + (-1)^{n(n+1)/2}
\]
for \( n \geq 2\). Find the number of \( n \leq 2023 \) such that \( x_n = 0 \).
loading...
Define the sequence \( x_n \) by \( x_1 = 0 \) and
\[
x_n = x_{\lfloor n/2 \rfloor} + (-1)^{n(n+1)/2}
\]
for \( n \geq 2\). Find the number of \( n \leq 2023 \) such that \( x_n = 0 \).
Let \(f(t)=(t^{pq}-1)(t-1) \) and \(g(t)=(t^{p}-1)(t^q-1) \) where \(p\) and \(q\) are relatively prime positive integers. Prove that \(\frac{f(t)}{g(t)}\) can be written as a polynomial where it has just \(1\) or \(-1\) as coefficients. (For example, when \(p=2\) and \(q=3\), we have that \(\frac{f(t)}{g(t)} = t^2-t+1\).)
The best solution was submitted by 김준홍 (KAIST 수리과학과 20학번, +4). Congratulations!
Here is the best solution of problem 2023-14.
Other solutions were submitted by 강지민 (세마고 3학년, +3), 김기수 (KAIST 수리과학과 18학번, +3), 김민서 (KAIST 수리과학과 19학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 이도현 (KAIST 수리과학과 석박통합과정 23학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 전해구 (KAIST 기계공학과 졸업생, +3), 조현준 (KAIST 수리과학과 22학번, +4), 지은성 (KAIST 수리과학과 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3). Muhammadfiruz Hasanov (+3).