Solution: 2022-22 An integral sequence

Define a sequence \( a_n \) by \( a_1 = 1 \) and
\[
a_{n+1} = \frac{1}{n} \left( 1 + \sum_{k=1}^n a_k^2 \right)
\]
for any \( n \geq 1 \). Prove or disprove that \( a_n \) is an integer for all \( n \geq 1 \).

The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2022-22.

Other solutions were submitted by 기영인 (KAIST 22학번, +3), 김기수 (KAIST 수리과학과 18학번, +3), 박준성 (KAIST 수리과학과 석박통합과정, +3). An incomplete solution was submitted.

GD Star Rating
loading...