Solution: 2022-19 Inequality for twice differentiable functions

Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function satisfying \( f(0) = 0 \) and \( 0 \leq f'(x) \leq 1 \). Prove that
\[ \left( \int_0^1 f(x) dx \right)^2 \geq \int_0^1 [f(x)]^3 dx. \]

The best solution was submitted by 기영인 (KAIST 22학번, +4). Congratulations!

Here is the best solution of problem 2022-19.

Other solutions were submitted by 여인영 (KAIST 물리학과 20학번, +3), Kawano Ren (Kaisei Senior High School, +3), 최예준 (서울과기대 행정학과 21학번, +3), 김준성 (KAIST 물리학과 박사과정, +3).

GD Star Rating
loading...