Solution: 2022-10 Polynomial with root 1

Prove or disprove the following:

For any positive integer \( n \), there exists a polynomial \( P_n \) of degree \( n^2 \) such that

(1) all coefficients of \( P_n \) are integers with absolute value at most \( n^2 \), and

(2) \( 1 \) is a root of \( P_n =0 \) with multiplicity at least \( n \).

The best solution was submitted by 박기찬 (KAIST 새내기과정학부 22학번, +4). Congratulations!

Here is the best solution of problem 2022-10

GD Star Rating
loading...