2022-15 A determinant of Stirling numbers of second kind

Let \(S(n,k)\) be the Stirling number of the second kind that is the number of ways to partition a set of \(n\) objects into \(k\) non-empty subsets. Prove the following equality \[ \det\left( \begin{matrix} S(m+1,1) & S(m+1,2) & \cdots & S(m+1,n) \\
S(m+2,1) & S(m+2,2) & \cdots & S(m+2,n) \\
\cdots & \cdots & \cdots & \cdots \\
S(m+n,1) & S(m+n,2) & \cdots & S(m+n,n) \end{matrix} \right) = (n!)^m \]

GD Star Rating
loading...