For a positive integer \( n \), let \( S(n) \) be the sum of all decimal digits in \( n \), i.e., if \( n = n_1 n_2 \dots n_m \) is the decimal expansion of \( n \), then \( S(n) = n_1 + n_2 + \dots + n_m \). Find all positive integers \( n \) and \( r \) such that \( (S(n))^r = S(n^r) \).
The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!
Here is his solution of problem 2018-09.
Alternative solutions were submitted by 채지석 (수리과학과 2016학번, +3), 한준호 (수리과학과 2015학번, +3), 이본우 (수리과학과 2017학번, +3), 권홍 (중앙대 물리학과, +2).
GD Star Rating
loading...
loading...