Monthly Archives: June 2017

Concluding 2017 Spring

Thanks all for participating POW actively. Here’s the list of winners:

1st prize (Gold): Jo, Tae Hyouk (조태혁, 수리과학과 2014학번)
2nd prize (Silver): Huy Tùng Nguyễn (수리과학과 2016학번)
2nd prize (Silver): 최대범 (수리과학과 2016학번)
2nd prize (Silver): Lee, Bonwoo (이본우, 2017학번)
3rd prize (Bronze): Jang, Kijoung (장기정, 수리과학과 2014학번)

조태혁 (수리과학과 2014학번) 36/40
Huy Tung Nguyen (2016학번) 35/40
최대범 (수리과학과 2016학번) 31/40
이본우 (2017학번) 30/40
장기정 (수리과학과 2014학번) 26/40
위성군 (수리과학과 2015학번) 25/40
최인혁 (물리학과 2015학번) 25/40
오동우 (수리과학과 2015학번) 24/40
김태균 (수리과학과 2016학번) 20/40
Ivan Adrian Koswara (전산학부 2013학번) 12/40
강한필 (2016학번) 9/40
유찬진 (수리과학과 2015학번) 4/40
채지석 (2016학번) 3/40
곽상훈 (수리과학과 2013학번) 3/40
김재현 (수리과학과 2016학번) 3/40
이정환 (수리과학과 2015학번) 3/40
이준호 (2016학번) 3/40
홍혁표 (수리과학과 2013학번) 3/40
이태영 (수리과학과 2013학번) 2/40

GD Star Rating
loading...

Solution: 2017-11 Infinite series

Find the value of
\[
\sum_{n=1}^{\infty} \frac{1+ \frac{1}{2} + \dots + \frac{1}{n}}{n(2n-1)}.
\]

The best solution was submitted by Jo, Tae Hyouk (조태혁, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2017-11.

Alternative solutions were submitted by Huy Tung Nguyen (2016학번, +3), 최대범 (수리과학과 2016학번, +3), 이본우 (2017학번, +2).

This was the last problem of Spring 2017. Thank you for participating POW actively.

GD Star Rating
loading...