Let \(A\) and \(B\) be \(n\times n\) real matrices for an odd integer \(n\). Prove that if both \(A+A^T\) and \(B+B^T\) are invertible, then \(AB\neq 0\).
GD Star Rating
loading...
2014-18 Rank,
loading...
Let \(A\) and \(B\) be \(n\times n\) real matrices for an odd integer \(n\). Prove that if both \(A+A^T\) and \(B+B^T\) are invertible, then \(AB\neq 0\).
답을 저번주에 제출했는데 결과는 언제나오나요?
바빠서 늦어지고 있습니다. 곧 알려드릴께요.