Let \( f(z) = z + e^{-z} \). Prove that, for any real number \( \lambda > 1 \), there exists a unique \( w \in H = \{ z \in \mathbb{C} : \text{Re } z > 0 \} \) such that \( f(w) = \lambda \).
The best solution was submitted by 박민재. Congratulations!
Similar solutions are submitted by 김동률(+3), 김범수(+3), 김호진(+3), 박지민(+3), 박훈민(+3), 양지훈(+3), 이시우(+3), 전한솔(+3), 정성진(+3), 조정휘(+3), 진우영(+3), Koswara(+3), Harmanto(+3). Thank you for your participation.
GD Star Rating
loading...
loading...