Unique inverse

20110425 박민재

POW2013-21. Let $f(z) = z + e^{-z}$. Prove that, for any real number $\lambda > 1$, there exists a unique $w \in H = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ such that $f(w) = \lambda$.

Solution. Let z = a + bi with $a, b \in \mathbb{R}$ and a > 0. Then, $\operatorname{Im} f(z) = b - e^{-a} \sin b = 0 \Leftrightarrow b = 0$ because $e^a > 1$. Now, restrict f to reals. f(0) = 1 and $f'(x) = 1 - e^{-x} > 0$ implies that f is strictly increasing, and $f((0, \infty)) = (1, \infty)$. Consequently, for given $\lambda > 1$, there exists the unique $x \in \mathbb{R}^+$ with $f(x) = \lambda$, while $f(z) \notin \mathbb{R}$ if $\operatorname{Re}(z) > 0$ and $z \notin \mathbb{R}$.