Unique inverse

20110425 박민재

POW2013-21. Let $f(z)=z+e^{-z}$. Prove that, for any real number $\lambda>1$, there exists a unique $w \in H=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ such that $f(w)=\lambda$.

Solution. Let $z=a+b i$ with $a, b \in \mathbb{R}$ and $a>0$. Then, $\operatorname{Im} f(z)=b-e^{-a} \sin b=$ $0 \Leftrightarrow b=0$ because $e^{a}>1$. Now, restrict f to reals. $f(0)=1$ and $f^{\prime}(x)=$ $1-e^{-x}>0$ implies that f is strictly increasing, and $f((0, \infty))=(1, \infty)$. Consequently, for given $\lambda>1$, there exists the unique $x \in \mathbb{R}^{+}$with $f(x)=\lambda$, while $f(z) \notin \mathbb{R}$ if $\operatorname{Re}(z)>0$ and $z \notin \mathbb{R}$.

